These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

78 related articles for article (PubMed ID: 20022595)

  • 1. Vascular intersection detection in retina fundus images using a new hybrid approach.
    Aibinu AM; Iqbal MI; Shafie AA; Salami MJ; Nilsson M
    Comput Biol Med; 2010 Jan; 40(1):81-9. PubMed ID: 20022595
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Robust detection and classification of longitudinal changes in color retinal fundus images for monitoring diabetic retinopathy.
    Narasimha-Iyer H; Can A; Roysam B; Stewart CV; Tanenbaum HL; Majerovics A; Singh H
    IEEE Trans Biomed Eng; 2006 Jun; 53(6):1084-98. PubMed ID: 16761836
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A contribution of image processing to the diagnosis of diabetic retinopathy--detection of exudates in color fundus images of the human retina.
    Walter T; Klein JC; Massin P; Erginay A
    IEEE Trans Med Imaging; 2002 Oct; 21(10):1236-43. PubMed ID: 12585705
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Points of interest and visual dictionaries for automatic retinal lesion detection.
    Rocha A; Carvalho T; Jelinek HF; Goldenstein S; Wainer J
    IEEE Trans Biomed Eng; 2012 Aug; 59(8):2244-53. PubMed ID: 22665502
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel automatic image processing algorithm for detection of hard exudates based on retinal image analysis.
    Sánchez CI; Hornero R; López MI; Aboy M; Poza J; Abásolo D
    Med Eng Phys; 2008 Apr; 30(3):350-7. PubMed ID: 17556004
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Segmentation of the optic disk in color eye fundus images using an adaptive morphological approach.
    Welfer D; Scharcanski J; Kitamura CM; Dal Pizzol MM; Ludwig LW; Marinho DR
    Comput Biol Med; 2010 Feb; 40(2):124-37. PubMed ID: 20045104
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A modified matched filter with double-sided thresholding for screening proliferative diabetic retinopathy.
    Zhang L; Li Q; You J; Zhang D
    IEEE Trans Inf Technol Biomed; 2009 Jul; 13(4):528-34. PubMed ID: 19389699
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A computational-intelligence-based approach for detection of exudates in diabetic retinopathy images.
    Osareh A; Shadgar B; Markham R
    IEEE Trans Inf Technol Biomed; 2009 Jul; 13(4):535-45. PubMed ID: 19586814
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automatic detection of microaneurysms in color fundus images.
    Walter T; Massin P; Erginay A; Ordonez R; Jeulin C; Klein JC
    Med Image Anal; 2007 Dec; 11(6):555-66. PubMed ID: 17950655
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optic disc detection from normalized digital fundus images by means of a vessels' direction matched filter.
    Youssif AR; Ghalwash AZ; Ghoneim AR
    IEEE Trans Med Imaging; 2008 Jan; 27(1):11-8. PubMed ID: 18270057
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interobserver agreement in the interpretation of single-field digital fundus images for diabetic retinopathy screening.
    Ruamviboonsuk P; Teerasuwanajak K; Tiensuwan M; Yuttitham K;
    Ophthalmology; 2006 May; 113(5):826-32. PubMed ID: 16650679
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Early detection of diabetes retinopathy by new algorithms for automatic recognition of vascular changes.
    Englmeier KH; Schmid K; Hildebrand C; Bichler S; Porta M; Maurino M; Bek T
    Eur J Med Res; 2004 Oct; 9(10):473-8. PubMed ID: 15546814
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automated detection of exudates for diabetic retinopathy screening.
    Fleming AD; Philip S; Goatman KA; Williams GJ; Olson JA; Sharp PF
    Phys Med Biol; 2007 Dec; 52(24):7385-96. PubMed ID: 18065845
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automatic detection of diabetic retinopathy exudates from non-dilated retinal images using mathematical morphology methods.
    Sopharak A; Uyyanonvara B; Barman S; Williamson TH
    Comput Med Imaging Graph; 2008 Dec; 32(8):720-7. PubMed ID: 18930631
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Incremental refinement of image salient-point detection.
    Andreopoulos Y; Patras I
    IEEE Trans Image Process; 2008 Sep; 17(9):1685-99. PubMed ID: 18713674
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Registration of fundus images for generating wide field composite images of the retina ].
    Baumgarten D; Doering A
    Biomed Tech (Berl); 2007 Dec; 52(6):365-74. PubMed ID: 18047401
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of early diabetic retinopathy by computer processing of fundus images--a preliminary study.
    Gilchrist J
    Ophthalmic Physiol Opt; 1987; 7(4):393-9. PubMed ID: 3454914
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accuracy of single-field nonmydriatic digital fundus image in screening for diabetic retinopathy.
    Suansilpong A; Rawdaree P
    J Med Assoc Thai; 2008 Sep; 91(9):1397-403. PubMed ID: 18843870
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automatic detection of red lesions in digital color fundus photographs.
    Niemeijer M; van Ginneken B; Staal J; Suttorp-Schulten MS; Abràmoff MD
    IEEE Trans Med Imaging; 2005 May; 24(5):584-92. PubMed ID: 15889546
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detection of neovascularization in retinal images using multivariate m-Mediods based classifier.
    Usman Akram M; Khalid S; Tariq A; Younus Javed M
    Comput Med Imaging Graph; 2013; 37(5-6):346-57. PubMed ID: 23916066
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.