These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

46 related articles for article (PubMed ID: 20022633)

  • 1. Nuclear calcium controls the apoptotic-like cell death induced by d-erythro-sphinganine in tobacco cells.
    Lachaud C; Da Silva D; Cotelle V; Thuleau P; Xiong TC; Jauneau A; Brière C; Graziana A; Bellec Y; Faure JD; Ranjeva R; Mazars C
    Cell Calcium; 2010 Jan; 47(1):92-100. PubMed ID: 20022633
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nuclear calcium signaling in plants.
    Charpentier M; Oldroyd GE
    Plant Physiol; 2013 Oct; 163(2):496-503. PubMed ID: 23749852
    [No Abstract]   [Full Text] [Related]  

  • 3. Sphingolipid Long-Chain Base Phosphate Degradation Can Be a Rate-Limiting Step in Long-Chain Base Homeostasis.
    Lambour B; Glenz R; Forner C; Krischke M; Mueller MJ; Fekete A; Waller F
    Front Plant Sci; 2022; 13():911073. PubMed ID: 35783987
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Two Classes of Ceramide Synthases Play Different Roles in Plant Immunity and Cell Death.
    Zeng HY; Bao HN; Chen YL; Chen DK; Zhang K; Liu SK; Yang L; Li YK; Yao N
    Front Plant Sci; 2022; 13():824585. PubMed ID: 35463421
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ca
    Ren R; Zhou H; Zhang L; Jiang X; Liu Y
    Plant Cell Rep; 2022 Apr; 41(4):1043-1057. PubMed ID: 35190883
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The bitter end: T2R bitter receptor agonists elevate nuclear calcium and induce apoptosis in non-ciliated airway epithelial cells.
    McMahon DB; Kuek LE; Johnson ME; Johnson PO; Horn RLJ; Carey RM; Adappa ND; Palmer JN; Lee RJ
    Cell Calcium; 2022 Jan; 101():102499. PubMed ID: 34839223
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distinct Molecular Pattern-Induced Calcium Signatures Lead to Different Downstream Transcriptional Regulations via AtSR1/CAMTA3.
    Yuan P; Jewell JB; Behera S; Tanaka K; Poovaiah BW
    Int J Mol Sci; 2020 Oct; 21(21):. PubMed ID: 33142885
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The dynamics and role of sphingolipids in eukaryotic organisms upon thermal adaptation.
    Fabri JHTM; de Sá NP; Malavazi I; Del Poeta M
    Prog Lipid Res; 2020 Nov; 80():101063. PubMed ID: 32888959
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Organized Disassembly of Photosynthesis During Programmed Cell Death Mediated By Long Chain Bases.
    Zavafer A; González-Solís A; Palacios-Bahena S; Saucedo-García M; Tapia de Aquino C; Vázquez-Santana S; King-Díaz B; Gavilanes-Ruiz M
    Sci Rep; 2020 Jun; 10(1):10360. PubMed ID: 32587330
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ceramide-Induced Cell Death Depends on Calcium and Caspase-Like Activity in Rice.
    Zhang QF; Li J; Bi FC; Liu Z; Chang ZY; Wang LY; Huang LQ; Yao N
    Front Plant Sci; 2020; 11():145. PubMed ID: 32161611
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Role of Plasmodesmata-Associated Receptor in Plant Development and Environmental Response.
    Vu MH; Iswanto ABB; Lee J; Kim JY
    Plants (Basel); 2020 Feb; 9(2):. PubMed ID: 32046090
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Consequences of Oxidative Stress on Plant Glycolytic and Respiratory Metabolism.
    Dumont S; Rivoal J
    Front Plant Sci; 2019; 10():166. PubMed ID: 30833954
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cytosolic and Nucleosolic Calcium Signaling in Response to Osmotic and Salt Stresses Are Independent of Each Other in Roots of
    Huang F; Luo J; Ning T; Cao W; Jin X; Zhao H; Wang Y; Han S
    Front Plant Sci; 2017; 8():1648. PubMed ID: 28983313
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nuclear pores enable sustained perinuclear calcium oscillations.
    Martins TV; Evans MJ; Wysham DB; Morris RJ
    BMC Syst Biol; 2016 Jul; 10(1):55. PubMed ID: 27449670
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plant sphingolipids: Their importance in cellular organization and adaption.
    Michaelson LV; Napier JA; Molino D; Faure JD
    Biochim Biophys Acta; 2016 Sep; 1861(9 Pt B):1329-1335. PubMed ID: 27086144
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calcium Sensors as Key Hubs in Plant Responses to Biotic and Abiotic Stresses.
    Ranty B; Aldon D; Cotelle V; Galaud JP; Thuleau P; Mazars C
    Front Plant Sci; 2016; 7():327. PubMed ID: 27014336
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dissecting stimulus-specific Ca2+ signals in amyloplasts and chloroplasts of Arabidopsis thaliana cell suspension cultures.
    Sello S; Perotto J; Carraretto L; Szabò I; Vothknecht UC; Navazio L
    J Exp Bot; 2016 Jun; 67(13):3965-74. PubMed ID: 26893493
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modifications of Sphingolipid Content Affect Tolerance to Hemibiotrophic and Necrotrophic Pathogens by Modulating Plant Defense Responses in Arabidopsis.
    Magnin-Robert M; Le Bourse D; Markham J; Dorey S; Clément C; Baillieul F; Dhondt-Cordelier S
    Plant Physiol; 2015 Nov; 169(3):2255-74. PubMed ID: 26378098
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deciphering the link between salicylic acid signaling and sphingolipid metabolism.
    Sánchez-Rangel D; Rivas-San Vicente M; de la Torre-Hernández ME; Nájera-Martínez M; Plasencia J
    Front Plant Sci; 2015; 6():125. PubMed ID: 25806037
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nitric oxide-sphingolipid interplays in plant signalling: a new enigma from the Sphinx?
    Guillas I; Puyaubert J; Baudouin E
    Front Plant Sci; 2013 Sep; 4():341. PubMed ID: 24062754
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.