These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 20022864)

  • 1. Bud dormancy release in elm (Ulmus spp.) clones--a case study of photoperiod and temperature responses.
    Ghelardini L; Santini A; Black-Samuelsson S; Myking T; Falusi M
    Tree Physiol; 2010 Feb; 30(2):264-74. PubMed ID: 20022864
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bud burst timing in Picea abies seedlings as affected by temperature during dormancy induction and mild spells during chilling.
    Granhus A; Fløistad IS; Søgaard G
    Tree Physiol; 2009 Apr; 29(4):497-503. PubMed ID: 19203964
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photoperiod and temperature responses of bud swelling and bud burst in four temperate forest tree species.
    Basler D; Körner C
    Tree Physiol; 2014 Apr; 34(4):377-88. PubMed ID: 24713858
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Susceptibility of 32 elm species and hybrids (Ulmus spp.) to the elm leaf beetle (Coleoptera: Chrysomelidae) under field conditions in Arizona.
    Bosu PP; Miller F; Wagner MR
    J Econ Entomol; 2007 Dec; 100(6):1808-14. PubMed ID: 18232397
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The minimum temperature for budburst in Betula depends on the state of dormancy.
    Junttila O; Hänninen H
    Tree Physiol; 2012 Mar; 32(3):337-45. PubMed ID: 22391009
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Co-ordinated gene expression during phases of dormancy release in raspberry (Rubus idaeus L.) buds.
    Mazzitelli L; Hancock RD; Haupt S; Walker PG; Pont SD; McNicol J; Cardle L; Morris J; Viola R; Brennan R; Hedley PE; Taylor MA
    J Exp Bot; 2007; 58(5):1035-45. PubMed ID: 17244630
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Semiochemical-mediated flight strategies of two invasive elm bark beetles: a potential factor in competitive displacement.
    Lee JC; Hamud SM; Negrón JF; Witcosky JJ; Seybold SJ
    Environ Entomol; 2010 Apr; 39(2):642-52. PubMed ID: 20388298
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Magnetic resonance microimaging indicates water diffusion correlates with dormancy induction in cultured hybrid poplar (Populus spp.) buds.
    Kalcsits L; Kendall E; Silim S; Tanino K
    Tree Physiol; 2009 Oct; 29(10):1269-77. PubMed ID: 19696054
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Low temperature, but not photoperiod, controls growth cessation and dormancy induction and release in apple and pear.
    Heide OM; Prestrud AK
    Tree Physiol; 2005 Jan; 25(1):109-14. PubMed ID: 15519992
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temperature efficiency for dormancy release in apricot varies when applied at different amounts of chill accumulation.
    Campoy JA; Ruiz D; Nortes MD; Egea J
    Plant Biol (Stuttg); 2013 Jan; 15 Suppl 1():28-35. PubMed ID: 22845025
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An approach to the determination of winter chill requirements for different Ribes cultivars.
    Jones HG; Hillis RM; Gordon SL; Brennan RM
    Plant Biol (Stuttg); 2013 Jan; 15 Suppl 1():18-27. PubMed ID: 22512943
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Climatic control of bud burst in young seedlings of nine provenances of Norway spruce.
    Søgaard G; Johnsen O; Nilsen J; Junttila O
    Tree Physiol; 2008 Feb; 28(2):311-20. PubMed ID: 18055441
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Seed germination of three Ulmus species from Turkey as influenced by temperature and light.
    Cicek E; Tilki F
    J Environ Biol; 2007 Apr; 28(2 Suppl):423-5. PubMed ID: 17929760
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Decoupling photo- and thermoperiod by projected climate change perturbs bud development, dormancy establishment and vernalization in the model tree Populus.
    Rinne PLH; Paul LK; van der Schoot C
    BMC Plant Biol; 2018 Oct; 18(1):220. PubMed ID: 30290771
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Internal development of vegetative buds of Norway spruce trees in relation to accumulated chilling and forcing temperatures.
    Viherä-Aarnio A; Sutinen S; Partanen J; Häkkinen R
    Tree Physiol; 2014 May; 34(5):547-56. PubMed ID: 24876293
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Light and temperature sensing and signaling in induction of bud dormancy in woody plants.
    Olsen JE
    Plant Mol Biol; 2010 May; 73(1-2):37-47. PubMed ID: 20213333
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Micropropagation of mature wych elm (Ulmus glabra Huds.).
    Biroscíková M; Spisáková K; Lipták S; Pichler V; Durkovic J
    Plant Cell Rep; 2004 Apr; 22(9):640-4. PubMed ID: 14758503
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High autumn temperature delays spring bud burst in boreal trees, counterbalancing the effect of climatic warming.
    Heide OM
    Tree Physiol; 2003 Sep; 23(13):931-6. PubMed ID: 14532017
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photoperiodic control of seasonal development and dormancy in tropical stem-succulent trees.
    Borchert R; Rivera G
    Tree Physiol; 2001 Mar; 21(4):213-21. PubMed ID: 11276415
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isolation and characterization of microsatellite markers for red elm (Ulmus rubra Muhl.) and cross-species amplification with Siberian elm (Ulmus pumila L.).
    Zalapa JE; Brunet J; Guries RP
    Mol Ecol Resour; 2008 Jan; 8(1):109-12. PubMed ID: 21585729
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.