BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

363 related articles for article (PubMed ID: 20022916)

  • 1. Riboswitch structure: an internal residue mimicking the purine ligand.
    Delfosse V; Bouchard P; Bonneau E; Dagenais P; Lemay JF; Lafontaine DA; Legault P
    Nucleic Acids Res; 2010 Apr; 38(6):2057-68. PubMed ID: 20022916
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermodynamic and kinetic characterization of ligand binding to the purine riboswitch aptamer domain.
    Gilbert SD; Stoddard CD; Wise SJ; Batey RT
    J Mol Biol; 2006 Jun; 359(3):754-68. PubMed ID: 16650860
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mutational analysis of the purine riboswitch aptamer domain.
    Gilbert SD; Love CE; Edwards AL; Batey RT
    Biochemistry; 2007 Nov; 46(46):13297-309. PubMed ID: 17960911
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interplay of 'induced fit' and preorganization in the ligand induced folding of the aptamer domain of the guanine binding riboswitch.
    Noeske J; Buck J; Fürtig B; Nasiri HR; Schwalbe H; Wöhnert J
    Nucleic Acids Res; 2007; 35(2):572-83. PubMed ID: 17175531
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Constitutive regulatory activity of an evolutionarily excluded riboswitch variant.
    Tremblay R; Lemay JF; Blouin S; Mulhbacher J; Bonneau É; Legault P; Dupont P; Penedo JC; Lafontaine DA
    J Biol Chem; 2011 Aug; 286(31):27406-15. PubMed ID: 21676871
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ligand-induced folding of the guanine-sensing riboswitch is controlled by a combined predetermined induced fit mechanism.
    Ottink OM; Rampersad SM; Tessari M; Zaman GJ; Heus HA; Wijmenga SS
    RNA; 2007 Dec; 13(12):2202-12. PubMed ID: 17959930
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dissecting the influence of Mg2+ on 3D architecture and ligand-binding of the guanine-sensing riboswitch aptamer domain.
    Buck J; Noeske J; Wöhnert J; Schwalbe H
    Nucleic Acids Res; 2010 Jul; 38(12):4143-53. PubMed ID: 20200045
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The importance of helix P1 stability for structural pre-organization and ligand binding affinity of the adenine riboswitch aptamer domain.
    Nozinovic S; Reining A; Kim YB; Noeske J; Schlepckow K; Wöhnert J; Schwalbe H
    RNA Biol; 2014; 11(5):655-6. PubMed ID: 24921630
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Requirements for efficient ligand-gated co-transcriptional switching in designed variants of the B. subtilis pbuE adenine-responsive riboswitch in E. coli.
    Drogalis LK; Batey RT
    PLoS One; 2020; 15(12):e0243155. PubMed ID: 33259551
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metal-ion binding and metal-ion induced folding of the adenine-sensing riboswitch aptamer domain.
    Noeske J; Schwalbe H; Wöhnert J
    Nucleic Acids Res; 2007; 35(15):5262-73. PubMed ID: 17686787
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ligand recognition determinants of guanine riboswitches.
    Mulhbacher J; Lafontaine DA
    Nucleic Acids Res; 2007; 35(16):5568-80. PubMed ID: 17704135
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adaptive ligand binding by the purine riboswitch in the recognition of guanine and adenine analogs.
    Gilbert SD; Reyes FE; Edwards AL; Batey RT
    Structure; 2009 Jun; 17(6):857-68. PubMed ID: 19523903
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural basis for discriminative regulation of gene expression by adenine- and guanine-sensing mRNAs.
    Serganov A; Yuan YR; Pikovskaya O; Polonskaia A; Malinina L; Phan AT; Hobartner C; Micura R; Breaker RR; Patel DJ
    Chem Biol; 2004 Dec; 11(12):1729-41. PubMed ID: 15610857
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanisms for differentiation between cognate and near-cognate ligands by purine riboswitches.
    Wacker A; Buck J; Richter C; Schwalbe H; Wöhnert J
    RNA Biol; 2012 May; 9(5):672-80. PubMed ID: 22647526
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure-guided mutational analysis of gene regulation by the Bacillus subtilis pbuE adenine-responsive riboswitch in a cellular context.
    Marcano-Velázquez JG; Batey RT
    J Biol Chem; 2015 Feb; 290(7):4464-75. PubMed ID: 25550163
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adenine riboswitches and gene activation by disruption of a transcription terminator.
    Mandal M; Breaker RR
    Nat Struct Mol Biol; 2004 Jan; 11(1):29-35. PubMed ID: 14718920
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conformational flexibility of adenine riboswitch aptamer in apo and bound states using NMR and an X-ray free electron laser.
    Ding J; Swain M; Yu P; Stagno JR; Wang YX
    J Biomol NMR; 2019 Sep; 73(8-9):509-518. PubMed ID: 31606878
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Core requirements of the adenine riboswitch aptamer for ligand binding.
    Lemay JF; Lafontaine DA
    RNA; 2007 Mar; 13(3):339-50. PubMed ID: 17200422
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Guanine riboswitch variants from Mesoplasma florum selectively recognize 2'-deoxyguanosine.
    Kim JN; Roth A; Breaker RR
    Proc Natl Acad Sci U S A; 2007 Oct; 104(41):16092-7. PubMed ID: 17911257
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design and antimicrobial action of purine analogues that bind Guanine riboswitches.
    Kim JN; Blount KF; Puskarz I; Lim J; Link KH; Breaker RR
    ACS Chem Biol; 2009 Nov; 4(11):915-27. PubMed ID: 19739679
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.