These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

360 related articles for article (PubMed ID: 20022916)

  • 1. Riboswitch structure: an internal residue mimicking the purine ligand.
    Delfosse V; Bouchard P; Bonneau E; Dagenais P; Lemay JF; Lafontaine DA; Legault P
    Nucleic Acids Res; 2010 Apr; 38(6):2057-68. PubMed ID: 20022916
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermodynamic and kinetic characterization of ligand binding to the purine riboswitch aptamer domain.
    Gilbert SD; Stoddard CD; Wise SJ; Batey RT
    J Mol Biol; 2006 Jun; 359(3):754-68. PubMed ID: 16650860
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mutational analysis of the purine riboswitch aptamer domain.
    Gilbert SD; Love CE; Edwards AL; Batey RT
    Biochemistry; 2007 Nov; 46(46):13297-309. PubMed ID: 17960911
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interplay of 'induced fit' and preorganization in the ligand induced folding of the aptamer domain of the guanine binding riboswitch.
    Noeske J; Buck J; Fürtig B; Nasiri HR; Schwalbe H; Wöhnert J
    Nucleic Acids Res; 2007; 35(2):572-83. PubMed ID: 17175531
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Constitutive regulatory activity of an evolutionarily excluded riboswitch variant.
    Tremblay R; Lemay JF; Blouin S; Mulhbacher J; Bonneau É; Legault P; Dupont P; Penedo JC; Lafontaine DA
    J Biol Chem; 2011 Aug; 286(31):27406-15. PubMed ID: 21676871
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ligand-induced folding of the guanine-sensing riboswitch is controlled by a combined predetermined induced fit mechanism.
    Ottink OM; Rampersad SM; Tessari M; Zaman GJ; Heus HA; Wijmenga SS
    RNA; 2007 Dec; 13(12):2202-12. PubMed ID: 17959930
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dissecting the influence of Mg2+ on 3D architecture and ligand-binding of the guanine-sensing riboswitch aptamer domain.
    Buck J; Noeske J; Wöhnert J; Schwalbe H
    Nucleic Acids Res; 2010 Jul; 38(12):4143-53. PubMed ID: 20200045
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The importance of helix P1 stability for structural pre-organization and ligand binding affinity of the adenine riboswitch aptamer domain.
    Nozinovic S; Reining A; Kim YB; Noeske J; Schlepckow K; Wöhnert J; Schwalbe H
    RNA Biol; 2014; 11(5):655-6. PubMed ID: 24921630
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Requirements for efficient ligand-gated co-transcriptional switching in designed variants of the B. subtilis pbuE adenine-responsive riboswitch in E. coli.
    Drogalis LK; Batey RT
    PLoS One; 2020; 15(12):e0243155. PubMed ID: 33259551
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metal-ion binding and metal-ion induced folding of the adenine-sensing riboswitch aptamer domain.
    Noeske J; Schwalbe H; Wöhnert J
    Nucleic Acids Res; 2007; 35(15):5262-73. PubMed ID: 17686787
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ligand recognition determinants of guanine riboswitches.
    Mulhbacher J; Lafontaine DA
    Nucleic Acids Res; 2007; 35(16):5568-80. PubMed ID: 17704135
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adaptive ligand binding by the purine riboswitch in the recognition of guanine and adenine analogs.
    Gilbert SD; Reyes FE; Edwards AL; Batey RT
    Structure; 2009 Jun; 17(6):857-68. PubMed ID: 19523903
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural basis for discriminative regulation of gene expression by adenine- and guanine-sensing mRNAs.
    Serganov A; Yuan YR; Pikovskaya O; Polonskaia A; Malinina L; Phan AT; Hobartner C; Micura R; Breaker RR; Patel DJ
    Chem Biol; 2004 Dec; 11(12):1729-41. PubMed ID: 15610857
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanisms for differentiation between cognate and near-cognate ligands by purine riboswitches.
    Wacker A; Buck J; Richter C; Schwalbe H; Wöhnert J
    RNA Biol; 2012 May; 9(5):672-80. PubMed ID: 22647526
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure-guided mutational analysis of gene regulation by the Bacillus subtilis pbuE adenine-responsive riboswitch in a cellular context.
    Marcano-Velázquez JG; Batey RT
    J Biol Chem; 2015 Feb; 290(7):4464-75. PubMed ID: 25550163
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adenine riboswitches and gene activation by disruption of a transcription terminator.
    Mandal M; Breaker RR
    Nat Struct Mol Biol; 2004 Jan; 11(1):29-35. PubMed ID: 14718920
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conformational flexibility of adenine riboswitch aptamer in apo and bound states using NMR and an X-ray free electron laser.
    Ding J; Swain M; Yu P; Stagno JR; Wang YX
    J Biomol NMR; 2019 Sep; 73(8-9):509-518. PubMed ID: 31606878
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Core requirements of the adenine riboswitch aptamer for ligand binding.
    Lemay JF; Lafontaine DA
    RNA; 2007 Mar; 13(3):339-50. PubMed ID: 17200422
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Guanine riboswitch variants from Mesoplasma florum selectively recognize 2'-deoxyguanosine.
    Kim JN; Roth A; Breaker RR
    Proc Natl Acad Sci U S A; 2007 Oct; 104(41):16092-7. PubMed ID: 17911257
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design and antimicrobial action of purine analogues that bind Guanine riboswitches.
    Kim JN; Blount KF; Puskarz I; Lim J; Link KH; Breaker RR
    ACS Chem Biol; 2009 Nov; 4(11):915-27. PubMed ID: 19739679
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.