BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 20022920)

  • 1. Thermoperiodic growth control by gibberellin does not involve changes in photosynthetic or respiratory capacities in pea.
    Stavang JA; Pettersen RI; Wendell M; Solhaug KA; Junttila O; Moe R; Olsen JE
    J Exp Bot; 2010 Feb; 61(4):1015-29. PubMed ID: 20022920
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermoperiodic stem elongation involves transcriptional regulation of gibberellin deactivation in pea.
    Stavang JA; Lindgård B; Erntsen A; Lid SE; Moe R; Olsen JE
    Plant Physiol; 2005 Aug; 138(4):2344-53. PubMed ID: 16055683
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Auxin-cytokinin and auxin-gibberellin interactions during morphogenesis of the compound leaves of pea (Pisum sativum).
    DeMason DA
    Planta; 2005 Sep; 222(1):151-66. PubMed ID: 15809864
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Pea DELLA proteins LA and CRY are important regulators of gibberellin synthesis and root growth.
    Weston DE; Elliott RC; Lester DR; Rameau C; Reid JB; Murfet IC; Ross JJ
    Plant Physiol; 2008 May; 147(1):199-205. PubMed ID: 18375599
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interactions between GA, auxin, and UNI expression controlling shoot ontogeny, leaf morphogenesis, and auxin response in Pisum sativum (Fabaceae): or how the uni-tac mutant is rescued.
    DeMason DA; Chetty VJ
    Am J Bot; 2011 May; 98(5):775-91. PubMed ID: 21613058
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Constitutive expression of pea Lhcb 1-2 in tobacco affects plant development, morphology and photosynthetic capacity.
    Labate MT; Ko K; Ko ZW; Pinto LS; Real MJ; Romano MR; Barja PR; Granell A; Friso G; van Wijk KJ; Brugnoli E; Labate CA
    Plant Mol Biol; 2004 Jul; 55(5):701-14. PubMed ID: 15604711
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of the gibberellin pathway by auxin and DELLA proteins.
    O'Neill DP; Davidson SE; Clarke VC; Yamauchi Y; Yamaguchi S; Kamiya Y; Reid JB; Ross JJ
    Planta; 2010 Oct; 232(5):1141-9. PubMed ID: 20706734
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photosynthetic contribution and characteristics of cucumber stems and petioles.
    Sun W; Ma N; Huang H; Wei J; Ma S; Liu H; Zhang S; Zhang Z; Sui X; Li X
    BMC Plant Biol; 2021 Oct; 21(1):454. PubMed ID: 34615487
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Physical basis for altered stem elongation rates in internode length mutants of Pisum.
    Behringer FJ; Cosgrove DJ; Reid JB; Davies PJ
    Plant Physiol; 1990; 94(1):166-73. PubMed ID: 11537473
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photosynthetic capacity and dry mass partitioning in dwarf and semi-dwarf wheat (Triticum aestivum L.).
    Bishop DL; Bugbee BG
    J Plant Physiol; 1998 Nov; 153(5-6):558-65. PubMed ID: 11542674
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential temperature regulation of GA metabolism in light and darkness in pea.
    Stavang JA; Junttila O; Moe R; Olsen JE
    J Exp Bot; 2007; 58(11):3061-9. PubMed ID: 17901196
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Variation potential-induced photosynthetic and respiratory changes increase ATP content in pea leaves.
    Surova L; Sherstneva O; Vodeneev V; Katicheva L; Semina M; Sukhov V
    J Plant Physiol; 2016 Sep; 202():57-64. PubMed ID: 27450494
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chromium (VI) induced phytotoxicity and oxidative stress in pea (Pisum sativum L.): biochemical changes and translocation of essential nutrients.
    Tiwari KK; Dwivedi S; Singh NK; Rai UN; Tripathi RD
    J Environ Biol; 2009 May; 30(3):389-94. PubMed ID: 20120464
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photosynthesis and growth responses of pea Pisum sativum L. under heavy metals stress.
    Hattab S; Dridi B; Chouba L; Ben KM; Bousetta H
    J Environ Sci (China); 2009; 21(11):1552-6. PubMed ID: 20108689
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High light intensity protects photosynthetic apparatus of pea plants against exposure to lead.
    Romanowska E; Wróblewska B; Drozak A; Siedlecka M
    Plant Physiol Biochem; 2006; 44(5-6):387-94. PubMed ID: 16814557
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stem juice production of the C4 sugarcane (Saccharum officinarum) is enhanced by growth at double-ambient CO2 and high temperature.
    Vu JC; Allen LH
    J Plant Physiol; 2009 Jul; 166(11):1141-51. PubMed ID: 19217687
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interactive effects of temperature and UVB radiation on methane emissions from different organs of pea plants grown in hydroponic system.
    Abdulmajeed AM; Derby SR; Strickland SK; Qaderi MM
    J Photochem Photobiol B; 2017 Jan; 166():193-201. PubMed ID: 27960115
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [The effect of light and temperature of the CO
    Schulze ED
    Oecologia; 1972 Sep; 9(3):235-258. PubMed ID: 28313125
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hormone interactions and regulation of Unifoliata, PsPK2, PsPIN1 and LE gene expression in pea (Pisum sativum) shoot tips.
    Bai F; DeMason DA
    Plant Cell Physiol; 2006 Jul; 47(7):935-48. PubMed ID: 16760220
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Pigment composition and photosynthetic activity of pea chlorophyll mutants].
    Ladygin VG
    Izv Akad Nauk Ser Biol; 2003; (4):447-54. PubMed ID: 12942751
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.