These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

296 related articles for article (PubMed ID: 20023001)

  • 41. Distinct motor strategies underlying split-belt adaptation in human walking and running.
    Ogawa T; Kawashima N; Obata H; Kanosue K; Nakazawa K
    PLoS One; 2015; 10(3):e0121951. PubMed ID: 25775426
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A novel optic flow pattern speeds split-belt locomotor adaptation.
    Finley JM; Statton MA; Bastian AJ
    J Neurophysiol; 2014 Mar; 111(5):969-76. PubMed ID: 24335220
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Adaptational and learning processes during human split-belt locomotion: interaction between central mechanisms and afferent input.
    Prokop T; Berger W; Zijlstra W; Dietz V
    Exp Brain Res; 1995; 106(3):449-56. PubMed ID: 8983988
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Coordinative structuring of gait kinematics during adaptation to variable and asymmetric split-belt treadmill walking - A principal component analysis approach.
    Hinkel-Lipsker JW; Hahn ME
    Hum Mov Sci; 2018 Jun; 59():178-192. PubMed ID: 29704789
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Cerebellar transcranial direct current stimulation for learning a novel split-belt treadmill task: a randomised controlled trial.
    Kumari N; Taylor D; Rashid U; Vandal AC; Smith PF; Signal N
    Sci Rep; 2020 Jul; 10(1):11853. PubMed ID: 32678285
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Does dual task placement and duration affect split-belt treadmill adaptation?
    Hinton DC; Conradsson D; Bouyer L; Paquette C
    Gait Posture; 2020 Jan; 75():115-120. PubMed ID: 31675553
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Characterizing dynamic balance during adaptive locomotor learning.
    Park S; Finley JM
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():50-53. PubMed ID: 29059808
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The presence of a single-nucleotide polymorphism in the BDNF gene affects the rate of locomotor adaptation after stroke.
    Helm EE; Tyrell CM; Pohlig RT; Brady LD; Reisman DS
    Exp Brain Res; 2016 Feb; 234(2):341-51. PubMed ID: 26487176
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A Spinal Mechanism Related to Left-Right Symmetry Reduces Cutaneous Reflex Modulation Independently of Speed During Split-Belt Locomotion.
    Hurteau MF; Frigon A
    J Neurosci; 2018 Nov; 38(48):10314-10328. PubMed ID: 30315129
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Gait asymmetry during early split-belt walking is related to perception of belt speed difference.
    Hoogkamer W; Bruijn SM; Potocanac Z; Van Calenbergh F; Swinnen SP; Duysens J
    J Neurophysiol; 2015 Sep; 114(3):1705-12. PubMed ID: 26203114
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A single high-intensity exercise bout during early consolidation does not influence retention or relearning of sensorimotor locomotor long-term memories.
    Charalambous CC; French MA; Morton SM; Reisman DS
    Exp Brain Res; 2019 Nov; 237(11):2799-2810. PubMed ID: 31444538
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Thinking about walking: effects of conscious correction versus distraction on locomotor adaptation.
    Malone LA; Bastian AJ
    J Neurophysiol; 2010 Apr; 103(4):1954-62. PubMed ID: 20147417
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Everyday multitasking habits: University students seamlessly text and walk on a split-belt treadmill.
    Hinton DC; Cheng YY; Paquette C
    Gait Posture; 2018 Jan; 59():168-173. PubMed ID: 29032000
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Spatial and Temporal Locomotor Learning in Mouse Cerebellum.
    Darmohray DM; Jacobs JR; Marques HG; Carey MR
    Neuron; 2019 Apr; 102(1):217-231.e4. PubMed ID: 30795901
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A model-based exploration of the role of pattern generating circuits during locomotor adaptation.
    Marjaninejad A; Finley JM
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():21-24. PubMed ID: 28268271
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Step time asymmetry but not step length asymmetry is adapted to optimize energy cost of split-belt treadmill walking.
    Stenum J; Choi JT
    J Physiol; 2020 Sep; 598(18):4063-4078. PubMed ID: 32662881
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Effects of gradual versus sudden training on the cognitive demand required while learning a novel locomotor task.
    Sawers A; Kelly VE; Hahn ME
    J Mot Behav; 2013; 45(5):405-14. PubMed ID: 23919633
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Locomotor Adaptation Deficits in Older Individuals With Cognitive Impairments: A Pilot Study.
    Pottorf TS; Nocera JR; Eicholtz SP; Kesar TM
    Front Neurol; 2022; 13():800338. PubMed ID: 35585850
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Time-series changes in intramuscular coherence associated with split-belt treadmill adaptation in humans.
    Oshima A; Wakahara T; Nakamura Y; Tsujiuchi N; Kamibayashi K
    Exp Brain Res; 2021 Jul; 239(7):2127-2139. PubMed ID: 33961075
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Mode-dependent control of human walking and running as revealed by split-belt locomotor adaptation.
    Ogawa T; Kawashima N; Obata H; Kanosue K; Nakazawa K
    J Exp Biol; 2015 Oct; 218(Pt 20):3192-8. PubMed ID: 26276863
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.