These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 20023013)

  • 1. Nitrogenase switch-off and regulation of ammonium assimilation in response to light deprivation in Rhodospirillum rubrum are influenced by the nitrogen source used during growth.
    Teixeira PF; Wang H; Nordlund S
    J Bacteriol; 2010 Mar; 192(5):1463-6. PubMed ID: 20023013
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of pyruvate on the metabolic regulation of nitrogenase activity in Rhodospirillum rubrum in darkness.
    Selao TT; Edgren T; Wang H; Norén A; Nordlund S
    Microbiology (Reading); 2011 Jun; 157(Pt 6):1834-1840. PubMed ID: 21393366
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Derepression of nitrogenase by addition of malate to cultures of Rhodospirillum rubrum grown with glutamate as the carbon and nitrogen source.
    Hoover TR; Ludden PW
    J Bacteriol; 1984 Jul; 159(1):400-3. PubMed ID: 6145702
    [TBL] [Abstract][Full Text] [Related]  

  • 4. GlnD is essential for NifA activation, NtrB/NtrC-regulated gene expression, and posttranslational regulation of nitrogenase activity in the photosynthetic, nitrogen-fixing bacterium Rhodospirillum rubrum.
    Zhang Y; Pohlmann EL; Roberts GP
    J Bacteriol; 2005 Feb; 187(4):1254-65. PubMed ID: 15687189
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photoproduction of ammonium ion from N2 in Rhodospirillum rubrum.
    Weare NM; Shanmugam KT
    Arch Microbiol; 1976 Nov; 110(23):207-13. PubMed ID: 13753
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mutagenesis and functional characterization of the glnB, glnA, and nifA genes from the photosynthetic bacterium Rhodospirillum rubrum.
    Zhang Y; Pohlmann EL; Ludden PW; Roberts GP
    J Bacteriol; 2000 Feb; 182(4):983-92. PubMed ID: 10648524
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Amino acid concentrations in Rhodospirillum rubrum during expression and switch-off of nitrogenase activity.
    Kanemoto RH; Ludden PW
    J Bacteriol; 1987 Jul; 169(7):3035-43. PubMed ID: 2885306
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of an ntrBC mutation on the posttranslational regulation of nitrogenase activity in Rhodospirillum rubrum.
    Zhang Y; Cummings AD; Burris RH; Ludden PW; Roberts GP
    J Bacteriol; 1995 Sep; 177(18):5322-6. PubMed ID: 7665521
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Uridylylation of the P(II) protein in the photosynthetic bacterium Rhodospirillum rubrum.
    Johansson M; Nordlund S
    J Bacteriol; 1997 Jul; 179(13):4190-4. PubMed ID: 9209032
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Changes in the NAD(P)H concentration caused by addition of nitrogenase 'switch-off' effectors in Rhodospirillum rubrum G-9, as measured by fluorescence.
    Norén A; Nordlund S
    FEBS Lett; 1994 Dec; 356(1):43-5. PubMed ID: 7988717
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of AmtB homologues on the post-translational regulation of nitrogenase activity in response to ammonium and energy signals in Rhodospirillum rubrum.
    Zhang Y; Wolfe DM; Pohlmann EL; Conrad MC; Roberts GP
    Microbiology (Reading); 2006 Jul; 152(Pt 7):2075-2089. PubMed ID: 16804182
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of light intensity and inhibitors of nitrogen assimilation on NH4+ inhibition of nitrogenase activity in Rhodospirillum rubrum and Anabaena sp.
    Yoch DC; Gotto JW
    J Bacteriol; 1982 Aug; 151(2):800-6. PubMed ID: 6807962
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Manganese, an essential trace element for N2 fixation by Rhodospirillum rubrum and Rhodopseudomonas capsulata: role in nitrogenase regulation.
    Yoch DC
    J Bacteriol; 1979 Dec; 140(3):987-95. PubMed ID: 42641
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Changes in the regulatory form of Rhodospirillum rubrum nitrogenase as influenced by nutritional and environmental factors.
    Yoch DC; Cantu M
    J Bacteriol; 1980 Jun; 142(3):899-907. PubMed ID: 6103895
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Derepressive effect of NH4+ on hydrogen production by deleting the glnA1 gene in Rhodobacter sphaeroides.
    Li X; Liu T; Wu Y; Zhao G; Zhou Z
    Biotechnol Bioeng; 2010 Jul; 106(4):564-72. PubMed ID: 20340141
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of perturbation of ATP level on the activity and regulation of nitrogenase in Rhodospirillum rubrum.
    Zhang Y; Pohlmann EL; Roberts GP
    J Bacteriol; 2009 Sep; 191(17):5526-37. PubMed ID: 19542280
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Studies on the effect of NAD(H) on nitrogenase activity in Rhodospirillum rubrum.
    Soliman A; Nordlund S
    Arch Microbiol; 1992; 157(5):431-5. PubMed ID: 1510568
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Changes in amino acid and nucleotide pools of Rhodospirillum rubrum during switch-off of nitrogenase activity initiated by NH4+ or darkness.
    Li JD; Hu CZ; Yoch DC
    J Bacteriol; 1987 Jan; 169(1):231-7. PubMed ID: 2878918
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional characterization of three GlnB homologs in the photosynthetic bacterium Rhodospirillum rubrum: roles in sensing ammonium and energy status.
    Zhang Y; Pohlmann EL; Ludden PW; Roberts GP
    J Bacteriol; 2001 Nov; 183(21):6159-68. PubMed ID: 11591658
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of nitrogen fixation in Rhodospirillum rubrum grown under dark, fermentative conditions.
    Schultz JE; Gotto JW; Weaver PF; Yoch DC
    J Bacteriol; 1985 Jun; 162(3):1322-4. PubMed ID: 3922950
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.