BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 20023154)

  • 61. Piceatannol attenuates cardiac hypertrophy in an animal model through regulation of the expression and binding of the transcription factor GATA binding factor 6.
    Kee HJ; Park S; Kang W; Lim KS; Kim JH; Ahn Y; Jeong MH
    FEBS Lett; 2014 May; 588(9):1529-36. PubMed ID: 24662306
    [TBL] [Abstract][Full Text] [Related]  

  • 62. The transcription factor Atonal homolog 8 regulates Gata4 and Friend of Gata-2 during vertebrate development.
    Rawnsley DR; Xiao J; Lee JS; Liu X; Mericko-Ishizuka P; Kumar V; He J; Basu A; Lu M; Lynn FC; Pack M; Gasa R; Kahn ML
    J Biol Chem; 2013 Aug; 288(34):24429-40. PubMed ID: 23836893
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Spdef deletion rescues the crypt cell proliferation defect in conditional Gata6 null mouse small intestine.
    Aronson BE; Stapleton KA; Vissers LA; Stokhuijzen E; Bruijnzeel H; Krasinski SD
    BMC Mol Biol; 2014 Jan; 15():3. PubMed ID: 24472151
    [TBL] [Abstract][Full Text] [Related]  

  • 64. GATA factors efficiently direct cardiac fate from embryonic stem cells.
    Turbendian HK; Gordillo M; Tsai SY; Lu J; Kang G; Liu TC; Tang A; Liu S; Fishman GI; Evans T
    Development; 2013 Apr; 140(8):1639-44. PubMed ID: 23487308
    [TBL] [Abstract][Full Text] [Related]  

  • 65. A context-specific cardiac β-catenin and GATA4 interaction influences TCF7L2 occupancy and remodels chromatin driving disease progression in the adult heart.
    Iyer LM; Nagarajan S; Woelfer M; Schoger E; Khadjeh S; Zafiriou MP; Kari V; Herting J; Pang ST; Weber T; Rathjens FS; Fischer TH; Toischer K; Hasenfuss G; Noack C; Johnsen SA; Zelarayán LC
    Nucleic Acids Res; 2018 Apr; 46(6):2850-2867. PubMed ID: 29394407
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Carboxy terminus of GATA4 transcription factor is required for its cardiogenic activity and interaction with CDK4.
    Gallagher JM; Yamak A; Kirilenko P; Black S; Bochtler M; Lefebvre C; Nemer M; Latinkić BV
    Mech Dev; 2014 Nov; 134():31-41. PubMed ID: 25241353
    [TBL] [Abstract][Full Text] [Related]  

  • 67. GATA transcription factors in the developing reproductive system.
    Zaytouni T; Efimenko EE; Tevosian SG
    Adv Genet; 2011; 76():93-134. PubMed ID: 22099693
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Identification and biological characterization of chicken embryonic cardiac progenitor cells.
    Bai C; Hou L; Zhang M; Wang L; Guan W; Ma Y
    Cell Prolif; 2013 Apr; 46(2):232-42. PubMed ID: 23510478
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Barhl2 limits growth of the diencephalic primordium through Caspase3 inhibition of beta-catenin activation.
    Juraver-Geslin HA; Ausseil JJ; Wassef M; Durand BC
    Proc Natl Acad Sci U S A; 2011 Feb; 108(6):2288-93. PubMed ID: 21262809
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Notch signaling, wt1 and foxc2 are key regulators of the podocyte gene regulatory network in Xenopus.
    White JT; Zhang B; Cerqueira DM; Tran U; Wessely O
    Development; 2010 Jun; 137(11):1863-73. PubMed ID: 20431116
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Reduction of XNkx2-10 expression leads to anterior defects and malformation of the embryonic heart.
    Allen BG; Allen-Brady K; Weeks DL
    Mech Dev; 2006 Oct; 123(10):719-29. PubMed ID: 16949797
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Coordinating the timing of cardiac precursor development during gastrulation: a new role for Notch signaling.
    Miazga CM; McLaughlin KA
    Dev Biol; 2009 Sep; 333(2):285-96. PubMed ID: 19580804
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Redundancy and evolution of GATA factor requirements in development of the myocardium.
    Peterkin T; Gibson A; Patient R
    Dev Biol; 2007 Nov; 311(2):623-35. PubMed ID: 17869240
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Nkx2.5 is involved in myeloid cell differentiation at anterior ventral blood islands in the Xenopus embryo.
    Sakata H; Maéno M
    Dev Growth Differ; 2014 Oct; 56(8):544-54. PubMed ID: 25283688
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Parsing the roles of the transcription factors GATA-4 and GATA-6 in the adult cardiac hypertrophic response.
    van Berlo JH; Aronow BJ; Molkentin JD
    PLoS One; 2013; 8(12):e84591. PubMed ID: 24391969
    [TBL] [Abstract][Full Text] [Related]  

  • 76. The roles and controls of GATA factors in blood and cardiac development.
    Dobrzycki T; Lalwani M; Telfer C; Monteiro R; Patient R
    IUBMB Life; 2020 Jan; 72(1):39-44. PubMed ID: 31778014
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Guiding Cardiac Conduction With GATA.
    Nemer M; Gharibeh L
    Circ Cardiovasc Genet; 2015 Apr; 8(2):247-9. PubMed ID: 25901035
    [No Abstract]   [Full Text] [Related]  

  • 78. GATA-Binding Factor 6 Contributes to Atrioventricular Node Development and Function.
    Liu F; Lu MM; Patel NN; Schillinger KJ; Wang T; Patel VV
    Circ Cardiovasc Genet; 2015 Apr; 8(2):284-93. PubMed ID: 25613430
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Combinatorial signaling in the heart orchestrates cardiac induction, lineage specification and chamber formation.
    Dunwoodie SL
    Semin Cell Dev Biol; 2007 Feb; 18(1):54-66. PubMed ID: 17236794
    [TBL] [Abstract][Full Text] [Related]  

  • 80. The miR-30 miRNA family regulates Xenopus pronephros development and targets the transcription factor Xlim1/Lhx1.
    Agrawal R; Tran U; Wessely O
    Development; 2009 Dec; 136(23):3927-36. PubMed ID: 19906860
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.