These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
216 related articles for article (PubMed ID: 20023303)
1. Effect of nanostructured titanium on anodization growth of self-organized TiO2 nanotubes. Zhang L; Han Y Nanotechnology; 2010 Feb; 21(5):055602. PubMed ID: 20023303 [TBL] [Abstract][Full Text] [Related]
2. Self-organized nanotubular oxide layers on Ti-6Al-7Nb and Ti-6Al-4V formed by anodization in NH4F solutions. Macak JM; Tsuchiya H; Taveira L; Ghicov A; Schmuki P J Biomed Mater Res A; 2005 Dec; 75(4):928-33. PubMed ID: 16138327 [TBL] [Abstract][Full Text] [Related]
3. TiO2 nanotubes: interdependence of substrate grain orientation and growth rate. Leonardi S; Russo V; Li Bassi A; Di Fonzo F; Murray TM; Efstathiadis H; Agnoli A; Kunze-Liebhäuser J ACS Appl Mater Interfaces; 2015 Jan; 7(3):1662-8. PubMed ID: 25545715 [TBL] [Abstract][Full Text] [Related]
4. Microstructure and deformation behavior of biocompatible TiO2 nanotubes on titanium substrate. Crawford GA; Chawla N; Das K; Bose S; Bandyopadhyay A Acta Biomater; 2007 May; 3(3):359-67. PubMed ID: 17067860 [TBL] [Abstract][Full Text] [Related]
5. TiO2 nanotubes on Ti: Influence of nanoscale morphology on bone cell-materials interaction. Das K; Bose S; Bandyopadhyay A J Biomed Mater Res A; 2009 Jul; 90(1):225-37. PubMed ID: 18496867 [TBL] [Abstract][Full Text] [Related]
6. Hydroxyapatite growth on anodic TiO2 nanotubes. Tsuchiya H; Macak JM; Müller L; Kunze J; Müller F; Greil P; Virtanen S; Schmuki P J Biomed Mater Res A; 2006 Jun; 77(3):534-41. PubMed ID: 16489589 [TBL] [Abstract][Full Text] [Related]
7. Anodic growth of highly ordered TiO2 nanotube arrays to 134 microm in length. Paulose M; Shankar K; Yoriya S; Prakasam HE; Varghese OK; Mor GK; LaTempa TJ; Fitzgerald A; Grimes CA J Phys Chem B; 2006 Aug; 110(33):16179-84. PubMed ID: 16913737 [TBL] [Abstract][Full Text] [Related]
8. Formation and characterization of self-organized TiO2 nanotube arrays by pulse anodization. Chanmanee W; Watcharenwong A; Chenthamarakshan CR; Kajitvichyanukul P; de Tacconi NR; Rajeshwar K J Am Chem Soc; 2008 Jan; 130(3):965-74. PubMed ID: 18163623 [TBL] [Abstract][Full Text] [Related]
9. Synthesis and growth mechanism of multilayer TiO2 nanotube arrays. Guan D; Wang Y Nanoscale; 2012 Apr; 4(9):2968-77. PubMed ID: 22460605 [TBL] [Abstract][Full Text] [Related]
10. Fast-rate formation of TiO2 nanotube arrays in an organic bath and their applications in photocatalysis. Sreekantan S; Saharudin KA; Lockman Z; Tzu TW Nanotechnology; 2010 Sep; 21(36):365603. PubMed ID: 20705970 [TBL] [Abstract][Full Text] [Related]
11. TiO2-WO3 composite nanotubes by alloy anodization: growth and enhanced electrochromic properties. Nah YC; Ghicov A; Kim D; Berger S; Schmuki P J Am Chem Soc; 2008 Dec; 130(48):16154-5. PubMed ID: 18998674 [TBL] [Abstract][Full Text] [Related]
12. Blood responses to titanium surface with TiO2 nano-mesh structure. Huang HH; Chen JY; Lin MC; Wang YT; Lee TL; Chen LK Clin Oral Implants Res; 2012 Mar; 23(3):379-83. PubMed ID: 21457350 [TBL] [Abstract][Full Text] [Related]
13. Self-assembled TiO(2) nanotube arrays by anodization of titanium in diethylene glycol: approach to extended pore widening. Yoriya S; Grimes CA Langmuir; 2010 Jan; 26(1):417-20. PubMed ID: 20038179 [TBL] [Abstract][Full Text] [Related]
14. Growth of nano-scale hydroxyapatite using chemically treated titanium oxide nanotubes. Oh SH; Finõnes RR; Daraio C; Chen LH; Jin S Biomaterials; 2005 Aug; 26(24):4938-43. PubMed ID: 15769528 [TBL] [Abstract][Full Text] [Related]
15. Significantly accelerated osteoblast cell growth on aligned TiO2 nanotubes. Oh S; Daraio C; Chen LH; Pisanic TR; Fiñones RR; Jin S J Biomed Mater Res A; 2006 Jul; 78(1):97-103. PubMed ID: 16602089 [TBL] [Abstract][Full Text] [Related]
16. Second-phase-dependent grain refinement in Ti-25Nb-3Mo-3Zr-2Sn alloy and its enhanced osteoblast response. Huang R; Zhuang H; Han Y Mater Sci Eng C Mater Biol Appl; 2014 Feb; 35():144-52. PubMed ID: 24411362 [TBL] [Abstract][Full Text] [Related]
17. Photoelectrocatalytic treatment of pentachlorophenol in aqueous solution using a rutile nanotube-like TiO2/Ti electrode. Yang S; Quan X; Li X; Sun C Photochem Photobiol Sci; 2006 Sep; 5(9):808-14. PubMed ID: 17047832 [TBL] [Abstract][Full Text] [Related]
18. Electrochemical formation of self-organized anodic nanotube coating on Ti-28Zr-8Nb biomedical alloy surface. Feng XJ; Macak JM; Albu SP; Schmuki P Acta Biomater; 2008 Mar; 4(2):318-23. PubMed ID: 17923448 [TBL] [Abstract][Full Text] [Related]
19. Nanoporous TiO2 and WO3 films by anodization of titanium and tungsten substrates: influence of process variables on morphology and photoelectrochemical response. de Tacconi NR; Chenthamarakshan CR; Yogeeswaran G; Watcharenwong A; de Zoysa RS; Basit NA; Rajeshwar K J Phys Chem B; 2006 Dec; 110(50):25347-55. PubMed ID: 17165981 [TBL] [Abstract][Full Text] [Related]
20. The influence of hydroxide on the initial stages of anodic growth of TiO2 nanotubular arrays. Al-Abdullah ZT; Shin Y; Kler R; Perry CC; Zhou W; Chen Q Nanotechnology; 2010 Dec; 21(50):505601. PubMed ID: 21098934 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]