These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 20023314)

  • 1. Intracellular ion monitoring using a gold-core polymer-shell nanosensor architecture.
    Stanca SE; Nietzsche S; Fritzsche W; Cranfield CG; Biskup C
    Nanotechnology; 2010 Feb; 21(5):055501. PubMed ID: 20023314
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dual-fluorophore ratiometric pH nanosensor with tuneable pKa and extended dynamic range.
    Chauhan VM; Burnett GR; Aylott JW
    Analyst; 2011 May; 136(9):1799-801. PubMed ID: 21416087
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A hydrogel based nanosensor with an unprecedented broad sensitivity range for pH measurements in cellular compartments.
    Zhang M; Søndergaard RV; Kumar EK; Henriksen JR; Cui D; Hammershøj P; Clausen MH; Andresen TL
    Analyst; 2015 Nov; 140(21):7246-53. PubMed ID: 26393332
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the design of fluorescent ratiometric nanosensors.
    Doussineau T; Schulz A; Lapresta-Fernandez A; Moro A; Körsten S; Trupp S; Mohr GJ
    Chemistry; 2010 Sep; 16(34):10290-9. PubMed ID: 20665579
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gold-loaded carbon nanoparticles from poly(vinyl alcohol)-b-poly(acrylonitrile) non-shell-cross-linked micelles.
    Bryaskova R; Willet N; Duwez AS; Debuigne A; Lepot L; Gilbert B; Jérôme C; Jérôme R; Detrembleur C
    Chem Asian J; 2009 Aug; 4(8):1338-45. PubMed ID: 19557781
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A fluorescence ratiometric nano-pH sensor based on dual-fluorophore-doped silica nanoparticles.
    Gao F; Tang L; Dai L; Wang L
    Spectrochim Acta A Mol Biomol Spectrosc; 2007 Jun; 67(2):517-21. PubMed ID: 16965933
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-assembled gold nanoshells on biodegradable chitosan fibers.
    Wang RH; Hu ZG; Liu Y; Lu H; Fei B; Szeto YS; Chan WL; Tao XM; Xin JH
    Biomacromolecules; 2006 Oct; 7(10):2719-21. PubMed ID: 17025344
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Smart core/shell nanocomposites: intelligent polymers modified gold nanoparticles.
    Li D; He Q; Li J
    Adv Colloid Interface Sci; 2009 Jul; 149(1-2):28-38. PubMed ID: 19201389
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two-photon nano-PEBBLE sensors: subcellular pH measurements.
    Ray A; Koo Lee YE; Epstein T; Kim G; Kopelman R
    Analyst; 2011 Sep; 136(18):3616-22. PubMed ID: 21773602
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Environmentally responsive core/shell particles via electrohydrodynamic co-jetting of fully miscible polymer solutions.
    Kazemi A; Lahann J
    Small; 2008 Oct; 4(10):1756-62. PubMed ID: 18819137
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluorescent core/shell nanoparticles for specific cell-nucleus staining.
    Yin M; Shen J; Gropeanu R; Pflugfelder GO; Weil T; Müllen K
    Small; 2008 Jul; 4(7):894-8. PubMed ID: 18561214
    [No Abstract]   [Full Text] [Related]  

  • 12. Natural polyampholyte-based core-shell nanoparticles with N-carboxyethylchitosan-containing core and poly(ethylene oxide) shell.
    Mincheva R; Bougard F; Paneva D; Vachaudez M; Manolova N; Rashkov I; Dubois P
    Biomacromolecules; 2009 Apr; 10(4):838-44. PubMed ID: 19235933
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Core/Shell fluorescent silica nanoparticles for chemical sensing: towards single-particle laboratories.
    Burns A; Sengupta P; Zedayko T; Baird B; Wiesner U
    Small; 2006 Jun; 2(6):723-6. PubMed ID: 17193111
    [No Abstract]   [Full Text] [Related]  

  • 14. Fluorescent or not? Size-dependent fluorescence switching for polymer-stabilized gold clusters in the 1.1-1.7 nm size range.
    Schaeffer N; Tan B; Dickinson C; Rosseinsky MJ; Laromaine A; McComb DW; Stevens MM; Wang Y; Petit L; Barentin C; Spiller DG; Cooper AI; Lévy R
    Chem Commun (Camb); 2008 Sep; (34):3986-8. PubMed ID: 18758601
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Double hydrophilic block copolymer monolayer protected hybrid gold nanoparticles and their shell cross-linking.
    Luo S; Xu J; Zhang Y; Liu S; Wu C
    J Phys Chem B; 2005 Dec; 109(47):22159-66. PubMed ID: 16853883
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design, calibration and application of broad-range optical nanosensors for determining intracellular pH.
    Søndergaard RV; Henriksen JR; Andresen TL
    Nat Protoc; 2014 Dec; 9(12):2841-58. PubMed ID: 25411952
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Amine-functionalized gold nanoparticles as non-cytotoxic and efficient intracellular siRNA delivery carriers.
    Lee SH; Bae KH; Kim SH; Lee KR; Park TG
    Int J Pharm; 2008 Nov; 364(1):94-101. PubMed ID: 18723087
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis and characterization of ratiometric nanosensors for pH quantification: a mixed micelle approach.
    Kumar EK; Almdal K; Andresen TL
    Chem Commun (Camb); 2012 May; 48(39):4776-8. PubMed ID: 22468265
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A simple protocol to stabilize gold nanoparticles using amphiphilic block copolymers: stability studies and viable cellular uptake.
    Rahme K; Vicendo P; Ayela C; Gaillard C; Payré B; Mingotaud C; Gauffre F
    Chemistry; 2009 Oct; 15(42):11151-9. PubMed ID: 19768714
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of pH-responsive core-shell nanocarriers for delivery of therapeutic and diagnostic agents.
    Xu S; Luo Y; Graeser R; Warnecke A; Kratz F; Hauff P; Licha K; Haag R
    Bioorg Med Chem Lett; 2009 Feb; 19(3):1030-4. PubMed ID: 19097889
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.