BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 20023381)

  • 1. Identification of a functional nuclear export sequence in diacylglycerol kinase-zeta.
    Evangelisti C; Gaboardi GC; Billi AM; Ognibene A; Goto K; Tazzari PL; McCubrey JA; Martelli AM
    Cell Cycle; 2010 Jan; 9(2):384-8. PubMed ID: 20023381
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nuclear diacylglycerol kinase-zeta is a negative regulator of cell cycle progression in C2C12 mouse myoblasts.
    Evangelisti C; Tazzari PL; Riccio M; Fiume R; Hozumi Y; Falà F; Goto K; Manzoli L; Cocco L; Martelli AM
    FASEB J; 2007 Oct; 21(12):3297-307. PubMed ID: 17488950
    [TBL] [Abstract][Full Text] [Related]  

  • 3. TIS21/BTG2/PC3 and cyclin D1 are key determinants of nuclear diacylglycerol kinase-zeta-dependent cell cycle arrest.
    Evangelisti C; Astolfi A; Gaboardi GC; Tazzari P; Pession A; Goto K; Martelli AM
    Cell Signal; 2009 May; 21(5):801-9. PubMed ID: 19263516
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of nuclear localization signal and nuclear export signal of VP1 from the chicken anemia virus and effects on VP2 shuttling in cells.
    Cheng JH; Lai GH; Lien YY; Sun FC; Hsu SL; Chuang PC; Lee MS
    Virol J; 2019 Apr; 16(1):45. PubMed ID: 30953524
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Calcium-calmodulin kinase I cooperatively regulates nucleocytoplasmic shuttling of CCTα by accessing a nuclear export signal.
    Agassandian M; Chen BB; Pulijala R; Kaercher L; Glasser JR; Mallampalli RK
    Mol Biol Cell; 2012 Jul; 23(14):2755-69. PubMed ID: 22621903
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Subnuclear localization and differentiation-dependent increased expression of DGK-zeta in C2C12 mouse myoblasts.
    Evangelisti C; Riccio M; Faenza I; Zini N; Hozumi Y; Goto K; Cocco L; Martelli AM
    J Cell Physiol; 2006 Nov; 209(2):370-8. PubMed ID: 16897754
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protein kinase C regulates the nuclear localization of diacylglycerol kinase-zeta.
    Topham MK; Bunting M; Zimmerman GA; McIntyre TM; Blackshear PJ; Prescott SM
    Nature; 1998 Aug; 394(6694):697-700. PubMed ID: 9716136
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of the nuclear export signal of polypyrimidine tract-binding protein.
    Li B; Yen TS
    J Biol Chem; 2002 Mar; 277(12):10306-14. PubMed ID: 11781313
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extracellular signal-regulated kinase 2 (ERK-2) mediated phosphorylation regulates nucleo-cytoplasmic shuttling and cell growth control of Ras-associated tumor suppressor protein, RASSF2.
    Kumari G; Mahalingam S
    Exp Cell Res; 2009 Oct; 315(16):2775-90. PubMed ID: 19555684
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interaction of gamma 1-syntrophin with diacylglycerol kinase-zeta. Regulation of nuclear localization by PDZ interactions.
    Hogan A; Shepherd L; Chabot J; Quenneville S; Prescott SM; Topham MK; Gee SH
    J Biol Chem; 2001 Jul; 276(28):26526-33. PubMed ID: 11352924
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of a functional nuclear export sequence in BRCA1.
    Rodríguez JA; Henderson BR
    J Biol Chem; 2000 Dec; 275(49):38589-96. PubMed ID: 10991937
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of a putative nuclear export signal motif in human NANOG homeobox domain.
    Park SW; Do HJ; Huh SH; Sung B; Uhm SJ; Song H; Kim NH; Kim JH
    Biochem Biophys Res Commun; 2012 May; 421(3):484-9. PubMed ID: 22516749
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A CRM1-mediated nuclear export signal governs cytoplasmic localization of BRCA2 and is essential for centrosomal localization of BRCA2.
    Han X; Saito H; Miki Y; Nakanishi A
    Oncogene; 2008 May; 27(21):2969-77. PubMed ID: 18059333
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of the ATM-activator protein Aven by CRM1-dependent nuclear export.
    Esmaili AM; Johnson EL; Thaivalappil SS; Kuhn HM; Kornbluth S; Irusta PM
    Cell Cycle; 2010 Oct; 9(19):3913-20. PubMed ID: 20935510
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crm1-mediated nuclear export of the Schizosaccharomyces pombe transcription factor Cuf1 during a shift from low to high copper concentrations.
    Beaudoin J; Labbé S
    Eukaryot Cell; 2007 May; 6(5):764-75. PubMed ID: 17384198
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of nuclear import and export signals within the structure of the zinc finger protein TIS11.
    Murata T; Yoshino Y; Morita N; Kaneda N
    Biochem Biophys Res Commun; 2002 May; 293(4):1242-7. PubMed ID: 12054509
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence for specific nucleocytoplasmic transport pathways used by leucine-rich nuclear export signals.
    Elfgang C; Rosorius O; Hofer L; Jaksche H; Hauber J; Bevec D
    Proc Natl Acad Sci U S A; 1999 May; 96(11):6229-34. PubMed ID: 10339570
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Leptomycin B inhibition of signal-mediated nuclear export by direct binding to CRM1.
    Kudo N; Wolff B; Sekimoto T; Schreiner EP; Yoneda Y; Yanagida M; Horinouchi S; Yoshida M
    Exp Cell Res; 1998 Aug; 242(2):540-7. PubMed ID: 9683540
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural basis for leucine-rich nuclear export signal recognition by CRM1.
    Dong X; Biswas A; Süel KE; Jackson LK; Martinez R; Gu H; Chook YM
    Nature; 2009 Apr; 458(7242):1136-41. PubMed ID: 19339969
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A comparison of the activity, sequence specificity, and CRM1-dependence of different nuclear export signals.
    Henderson BR; Eleftheriou A
    Exp Cell Res; 2000 Apr; 256(1):213-24. PubMed ID: 10739668
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.