These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 20023695)
1. Phenotype-assisted transcriptome analysis identifies FOXM1 downstream from Ras-MKK3-p38 to regulate in vitro cellular invasion. Behren A; Mühlen S; Acuna Sanhueza GA; Schwager C; Plinkert PK; Huber PE; Abdollahi A; Simon C Oncogene; 2010 Mar; 29(10):1519-30. PubMed ID: 20023695 [TBL] [Abstract][Full Text] [Related]
2. H-Ras-specific activation of Rac-MKK3/6-p38 pathway: its critical role in invasion and migration of breast epithelial cells. Shin I; Kim S; Song H; Kim HR; Moon A J Biol Chem; 2005 Apr; 280(15):14675-83. PubMed ID: 15677464 [TBL] [Abstract][Full Text] [Related]
3. MAP-ing glioma invasion: mitogen-activated protein kinase kinase 3 and p38 drive glioma invasion and progression and predict patient survival. Demuth T; Reavie LB; Rennert JL; Nakada M; Nakada S; Hoelzinger DB; Beaudry CE; Henrichs AN; Anderson EM; Berens ME Mol Cancer Ther; 2007 Apr; 6(4):1212-22. PubMed ID: 17406030 [TBL] [Abstract][Full Text] [Related]
4. The p38 SAPK pathway is required for Ha-ras induced in vitro invasion of NIH3T3 cells. Behren A; Binder K; Vucelic G; Herberhold S; Hirt B; Loewenheim H; Preyer S; Zenner HP; Simon C Exp Cell Res; 2005 Feb; 303(2):321-30. PubMed ID: 15652346 [TBL] [Abstract][Full Text] [Related]
5. The p38 MAPK-MK2 axis regulates E2F1 and FOXM1 expression after epirubicin treatment. de Olano N; Koo CY; Monteiro LJ; Pinto PH; Gomes AR; Aligue R; Lam EW Mol Cancer Res; 2012 Sep; 10(9):1189-202. PubMed ID: 22802261 [TBL] [Abstract][Full Text] [Related]
6. Mitogen-activated protein kinases, Erk and p38, phosphorylate and regulate Foxo1. Asada S; Daitoku H; Matsuzaki H; Saito T; Sudo T; Mukai H; Iwashita S; Kako K; Kishi T; Kasuya Y; Fukamizu A Cell Signal; 2007 Mar; 19(3):519-27. PubMed ID: 17113751 [TBL] [Abstract][Full Text] [Related]
7. Role of MKK3 and p38 MAPK in cytokine-induced death of insulin-producing cells. Makeeva N; Myers JW; Welsh N Biochem J; 2006 Jan; 393(Pt 1):129-39. PubMed ID: 16097952 [TBL] [Abstract][Full Text] [Related]
8. Multiple activation mechanisms of p38alpha mitogen-activated protein kinase. Kang YJ; Seit-Nebi A; Davis RJ; Han J J Biol Chem; 2006 Sep; 281(36):26225-34. PubMed ID: 16849316 [TBL] [Abstract][Full Text] [Related]
9. Peroxiredoxin II promotes hepatic tumorigenesis through cooperation with Ras/Forkhead box M1 signaling pathway. Park YH; Kim SU; Kwon TH; Kim JM; Song IS; Shin HJ; Lee BK; Bang DH; Lee SJ; Lee DS; Chang KT; Kim BY; Yu DY Oncogene; 2016 Jul; 35(27):3503-13. PubMed ID: 26500057 [TBL] [Abstract][Full Text] [Related]
10. Computational identification of a p38SAPK-regulated transcription factor network required for tumor cell quiescence. Adam AP; George A; Schewe D; Bragado P; Iglesias BV; Ranganathan AC; Kourtidis A; Conklin DS; Aguirre-Ghiso JA Cancer Res; 2009 Jul; 69(14):5664-72. PubMed ID: 19584293 [TBL] [Abstract][Full Text] [Related]
11. MKK3/6-p38 MAPK signaling is required for IL-1beta and TNF-alpha-induced RANKL expression in bone marrow stromal cells. Rossa C; Ehmann K; Liu M; Patil C; Kirkwood KL J Interferon Cytokine Res; 2006 Oct; 26(10):719-29. PubMed ID: 17032166 [TBL] [Abstract][Full Text] [Related]
12. TGF-beta-activated kinase 1 and TAK1-binding protein 1 cooperate to mediate TGF-beta1-induced MKK3-p38 MAPK activation and stimulation of type I collagen. Kim SI; Kwak JH; Zachariah M; He Y; Wang L; Choi ME Am J Physiol Renal Physiol; 2007 May; 292(5):F1471-8. PubMed ID: 17299140 [TBL] [Abstract][Full Text] [Related]
13. Caveolin-1 confers antiinflammatory effects in murine macrophages via the MKK3/p38 MAPK pathway. Wang XM; Kim HP; Song R; Choi AM Am J Respir Cell Mol Biol; 2006 Apr; 34(4):434-42. PubMed ID: 16357362 [TBL] [Abstract][Full Text] [Related]
14. CUG2, a novel oncogene confers reoviral replication through Ras and p38 signaling pathway. Park EH; Park EH; Cho IR; Srisuttee R; Min HJ; Oh MJ; Jeong YJ; Jhun BH; Johnston RN; Lee S; Koh SS; Chung YH Cancer Gene Ther; 2010 May; 17(5):307-14. PubMed ID: 20075984 [TBL] [Abstract][Full Text] [Related]
15. MKK3/6-p38 MAPK negatively regulates murine MMP-13 gene expression induced by IL-1beta and TNF-alpha in immortalized periodontal ligament fibroblasts. Rossa C; Liu M; Patil C; Kirkwood KL Matrix Biol; 2005 Oct; 24(7):478-88. PubMed ID: 16046111 [TBL] [Abstract][Full Text] [Related]
16. Diverse mechanisms of myocardial p38 mitogen-activated protein kinase activation: evidence for MKK-independent activation by a TAB1-associated mechanism contributing to injury during myocardial ischemia. Tanno M; Bassi R; Gorog DA; Saurin AT; Jiang J; Heads RJ; Martin JL; Davis RJ; Flavell RA; Marber MS Circ Res; 2003 Aug; 93(3):254-61. PubMed ID: 12829618 [TBL] [Abstract][Full Text] [Related]
17. Rit, a non-lipid-modified Ras-related protein, transforms NIH3T3 cells without activating the ERK, JNK, p38 MAPK or PI3K/Akt pathways. Rusyn EV; Reynolds ER; Shao H; Grana TM; Chan TO; Andres DA; Cox AD Oncogene; 2000 Sep; 19(41):4685-94. PubMed ID: 11032018 [TBL] [Abstract][Full Text] [Related]
18. p38 MAPK α and β isoforms differentially regulate plasma membrane localization of MRP2. Schonhoff CM; Park SW; Webster CR; Anwer MS Am J Physiol Gastrointest Liver Physiol; 2016 Jun; 310(11):G999-G1005. PubMed ID: 27012769 [TBL] [Abstract][Full Text] [Related]
19. MKK3 modulates JNK-dependent cell migration and invasion. Sun Y; Zhang D; Guo X; Li W; Li C; Luo J; Zhou M; Xue L Cell Death Dis; 2019 Feb; 10(3):149. PubMed ID: 30770795 [TBL] [Abstract][Full Text] [Related]
20. p38 MAP kinase inhibits neutrophil development through phosphorylation of C/EBPalpha on serine 21. Geest CR; Buitenhuis M; Laarhoven AG; Bierings MB; Bruin MC; Vellenga E; Coffer PJ Stem Cells; 2009 Sep; 27(9):2271-82. PubMed ID: 19544470 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]