These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. [The biologic functional surfaces and their applications in tissue engineering]. Yao F; Chen M; Zhang H; Zhang H; An X; Yao K Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2007 Oct; 24(5):1177-9, 1199. PubMed ID: 18027721 [TBL] [Abstract][Full Text] [Related]
4. Electrospun bioscaffolds that mimic the topology of extracellular matrix. Han D; Gouma PI Nanomedicine; 2006 Mar; 2(1):37-41. PubMed ID: 17292114 [TBL] [Abstract][Full Text] [Related]
5. Design of three-dimensional biomimetic scaffolds. Owen SC; Shoichet MS J Biomed Mater Res A; 2010 Sep; 94(4):1321-31. PubMed ID: 20597126 [TBL] [Abstract][Full Text] [Related]
6. In situ collagen assembly for integrating microfabricated three-dimensional cell-seeded matrices. Gillette BM; Jensen JA; Tang B; Yang GJ; Bazargan-Lari A; Zhong M; Sia SK Nat Mater; 2008 Aug; 7(8):636-40. PubMed ID: 18511938 [TBL] [Abstract][Full Text] [Related]
10. Collagen tissue engineering: development of novel biomaterials and applications. Cen L; Liu W; Cui L; Zhang W; Cao Y Pediatr Res; 2008 May; 63(5):492-6. PubMed ID: 18427293 [TBL] [Abstract][Full Text] [Related]
11. Chitosan/polyester-based scaffolds for cartilage tissue engineering: assessment of extracellular matrix formation. Alves da Silva ML; Crawford A; Mundy JM; Correlo VM; Sol P; Bhattacharya M; Hatton PV; Reis RL; Neves NM Acta Biomater; 2010 Mar; 6(3):1149-57. PubMed ID: 19788942 [TBL] [Abstract][Full Text] [Related]
13. Surface modification of polyester biomaterials for tissue engineering. Jiao YP; Cui FZ Biomed Mater; 2007 Dec; 2(4):R24-37. PubMed ID: 18458475 [TBL] [Abstract][Full Text] [Related]
14. Evaluating drug efficacy and toxicology in three dimensions: using synthetic extracellular matrices in drug discovery. Prestwich GD Acc Chem Res; 2008 Jan; 41(1):139-48. PubMed ID: 17655274 [TBL] [Abstract][Full Text] [Related]
15. A synthetic nanofibrillar matrix promotes in vivo-like organization and morphogenesis for cells in culture. Schindler M; Ahmed I; Kamal J; Nur-E-Kamal A; Grafe TH; Young Chung H; Meiners S Biomaterials; 2005 Oct; 26(28):5624-31. PubMed ID: 15878367 [TBL] [Abstract][Full Text] [Related]
16. Integrating novel technologies to fabricate smart scaffolds. Moroni L; de Wijn JR; van Blitterswijk CA J Biomater Sci Polym Ed; 2008; 19(5):543-72. PubMed ID: 18419938 [TBL] [Abstract][Full Text] [Related]
17. An artificial extracellular matrix created by hepatocyte growth factor fused to IgG-Fc. Azuma K; Nagaoka M; Cho CS; Akaike T Biomaterials; 2010 Feb; 31(5):802-9. PubMed ID: 19846215 [TBL] [Abstract][Full Text] [Related]
18. [Extraction techniques and biocompatibility evaluations of naturally derived nerve extracellular matrix]. Wang Y; Peng J; Zhao Z; Huang J; Zhao B; Zhang L; Sui X; Xu W; Chen J; Lu S Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2010 Sep; 24(9):1128-32. PubMed ID: 20939489 [TBL] [Abstract][Full Text] [Related]
19. Bio-electrospraying and cell electrospinning: progress and opportunities for basic biology and clinical sciences. Poncelet D; de Vos P; Suter N; Jayasinghe SN Adv Healthc Mater; 2012 Jan; 1(1):27-34. PubMed ID: 23184685 [TBL] [Abstract][Full Text] [Related]
20. Vascular tissue generation in response to signaling molecules integrated with a novel poly(epsilon-caprolactone)-fibrin hybrid scaffold. Pankajakshan D; Krishnan V K; Krishnan LK J Tissue Eng Regen Med; 2007; 1(5):389-97. PubMed ID: 18038433 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]