These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 20023798)

  • 1. Analysis of aptamer sequence activity relationships.
    Platt M; Rowe W; Knowles J; Day PJ; Kell DB
    Integr Biol (Camb); 2009 Jan; 1(1):116-22. PubMed ID: 20023798
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On-chip synthesis of RNA aptamer microarrays for multiplexed protein biosensing with SPR imaging measurements.
    Chen Y; Nakamoto K; Niwa O; Corn RM
    Langmuir; 2012 Jun; 28(22):8281-5. PubMed ID: 22458258
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification and optimization of DNA aptamer binding regions using DNA microarrays.
    Fischer NO; Tarasow TM
    Methods Mol Biol; 2011; 723():57-66. PubMed ID: 21370059
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Real time monitoring of thrombin interactions with its aptamers: insights into the sandwich complex formation.
    Daniel C; Mélaïne F; Roupioz Y; Livache T; Buhot A
    Biosens Bioelectron; 2013 Feb; 40(1):186-92. PubMed ID: 22863116
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Probing the limits of aptamer affinity with a microfluidic SELEX platform.
    Ahmad KM; Oh SS; Kim S; McClellen FM; Xiao Y; Soh HT
    PLoS One; 2011; 6(11):e27051. PubMed ID: 22110600
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimized light-directed synthesis of aptamer microarrays.
    Franssen-van Hal NL; van der Putte P; Hellmuth K; Matysiak S; Kretschy N; Somoza MM
    Anal Chem; 2013 Jun; 85(12):5950-7. PubMed ID: 23672295
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On-chip aptamer-based sandwich assay for thrombin detection employing magnetic beads and quantum dots.
    Tennico YH; Hutanu D; Koesdjojo MT; Bartel CM; Remcho VT
    Anal Chem; 2010 Jul; 82(13):5591-7. PubMed ID: 20545301
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acyclic identification of aptamers for human alpha-thrombin using over-represented libraries and deep sequencing.
    Kupakuwana GV; Crill JE; McPike MP; Borer PN
    PLoS One; 2011; 6(5):e19395. PubMed ID: 21625587
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aptamer-based thrombin assay on microfluidic platform.
    Chen FY; Wang Z; Li P; Lian HZ; Chen HY
    Electrophoresis; 2013 Dec; 34(24):3260-6. PubMed ID: 24127412
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mapping the affinity landscape of Thrombin-binding aptamers on 2΄F-ANA/DNA chimeric G-Quadruplex microarrays.
    Lietard J; Abou Assi H; Gómez-Pinto I; González C; Somoza MM; Damha MJ
    Nucleic Acids Res; 2017 Feb; 45(4):1619-1632. PubMed ID: 28100695
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluorescent measurement of affinity binding between thrombin and its aptamers using on-chip affinity monoliths.
    Gao C; Sun X; Woolley AT
    J Chromatogr A; 2013 May; 1291():92-6. PubMed ID: 23587316
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Array-based evolution of DNA aptamers allows modelling of an explicit sequence-fitness landscape.
    Knight CG; Platt M; Rowe W; Wedge DC; Khan F; Day PJ; McShea A; Knowles J; Kell DB
    Nucleic Acids Res; 2009 Jan; 37(1):e6. PubMed ID: 19029139
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Convergent evolution to an aptamer observed in small populations on DNA microarrays.
    Rowe W; Platt M; Wedge DC; Day PJ; Kell DB; Knowles JD
    Phys Biol; 2010 Sep; 7(3):036007. PubMed ID: 20811084
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Homogeneous DNA sensing using enzyme-inhibiting DNA aptamers.
    Yoshida W; Sode K; Ikebukuro K
    Biochem Biophys Res Commun; 2006 Sep; 348(1):245-52. PubMed ID: 16876760
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aptameric sensors based on structural change for diagnosis.
    Abe K; Ogasawara D; Yoshida W; Sode K; Ikebukuro K
    Faraday Discuss; 2011; 149():93-105; discussion 137-57. PubMed ID: 21413176
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Massively parallel interrogation of aptamer sequence, structure and function.
    Fischer NO; Tok JB; Tarasow TM
    PLoS One; 2008 Jul; 3(7):e2720. PubMed ID: 18628955
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A sol-gel-based microfluidics system enhances the efficiency of RNA aptamer selection.
    Ahn JY; Jo M; Dua P; Lee DK; Kim S
    Oligonucleotides; 2011; 21(2):93-100. PubMed ID: 21413890
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single-Round DNA Aptamer Selection by Combined Use of Capillary Electrophoresis and Next Generation Sequencing: An Aptaomics Approach for Identifying Unique Functional Protein-Binding DNA Aptamers.
    Saito S; Sakamoto T; Tanaka N; Watanabe R; Kamimura T; Ota K; Riley KR; Yoshimoto K; Tasaki-Handa Y; Shibukawa M
    Chemistry; 2021 Jul; 27(39):10058-10067. PubMed ID: 33991022
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface plasmon resonance imaging for affinity analysis of aptamer-protein interactions with PDMS microfluidic chips.
    Wang Z; Wilkop T; Xu D; Dong Y; Ma G; Cheng Q
    Anal Bioanal Chem; 2007 Oct; 389(3):819-25. PubMed ID: 17673982
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aptameric enzyme subunit for homogeneous DNA sensing.
    Ikebukuro K; Yoshida W; Sode K
    Biotechnol Lett; 2008 Feb; 30(2):243-52. PubMed ID: 17849085
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.