These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 20023808)

  • 1. Measuring the three-phase contact angle of nanoparticles at fluid interfaces.
    Arnaudov LN; Cayre OJ; Cohen Stuart MA; Stoyanov SD; Paunov VN
    Phys Chem Chem Phys; 2010 Jan; 12(2):328-31. PubMed ID: 20023808
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contact angles in relation to emulsions stabilised solely by silica nanoparticles including systems containing room temperature ionic liquids.
    Binks BP; Dyab AK; Fletcher PD
    Phys Chem Chem Phys; 2007 Dec; 9(48):6391-7. PubMed ID: 18060169
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrophobic coating- and surface active solvent-mediated self-assembly of charged gold and silver nanoparticles at water-air and water-oil interfaces.
    Xu L; Han G; Hu J; He Y; Pan J; Li Y; Xiang J
    Phys Chem Chem Phys; 2009 Aug; 11(30):6490-7. PubMed ID: 19809681
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanoparticles of varying hydrophobicity at the emulsion droplet-water interface: adsorption and coalescence stability.
    Simovic S; Prestidge CA
    Langmuir; 2004 Sep; 20(19):8357-65. PubMed ID: 15350114
    [TBL] [Abstract][Full Text] [Related]  

  • 5. AFM study of mineral wettability with reservoir oils.
    Kumar K; Dao E; Mohanty KK
    J Colloid Interface Sci; 2005 Sep; 289(1):206-17. PubMed ID: 16009229
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contact angles of colloid silica and gold particles at air-water and oil-water interfaces determined with the gel trapping technique.
    Cayre OJ; Paunov VN
    Langmuir; 2004 Oct; 20(22):9594-9. PubMed ID: 15491191
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Emulsions stabilised by food colloid particles: role of particle adsorption and wettability at the liquid interface.
    Paunov VN; Cayre OJ; Noble PF; Stoyanov SD; Velikov KP; Golding M
    J Colloid Interface Sci; 2007 Aug; 312(2):381-9. PubMed ID: 17449055
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microfluidic fabrication of stable nanoparticle-shelled bubbles.
    Lee MH; Prasad V; Lee D
    Langmuir; 2010 Feb; 26(4):2227-30. PubMed ID: 20039657
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contact angle determination of nanoparticles: film balance and scanning angle reflectometry studies.
    Deák A; Hild E; Kovács AL; Hórvölgyi Z
    Phys Chem Chem Phys; 2007 Dec; 9(48):6359-70. PubMed ID: 18060166
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation of microscopic and planar oil-water interfaces that are decorated with prescribed densities of insoluble amphiphiles.
    Meli MV; Lin IH; Abbott NL
    J Am Chem Soc; 2008 Apr; 130(13):4326-33. PubMed ID: 18335929
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of alcohol-water exchange and surface scanning on nanobubbles and the attraction between hydrophobic surfaces.
    Hampton MA; Donose BC; Nguyen AV
    J Colloid Interface Sci; 2008 Sep; 325(1):267-74. PubMed ID: 18547582
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contact angle assessment of hydrophobic silica nanoparticles related to the mechanisms of dry water formation.
    Forny L; Saleh K; Denoyel R; Pezron I
    Langmuir; 2010 Feb; 26(4):2333-8. PubMed ID: 20141200
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation of evaporation-resistant aqueous microdroplet arrays as a model system for the study of molecular order at the liquid/air interface.
    Meyer E; Mueller M; Braun HG
    ACS Appl Mater Interfaces; 2009 Aug; 1(8):1682-7. PubMed ID: 20355783
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phospholipid langmuir film as template for in situ silica nanoparticle formation at the air/water interface.
    Li H; Pfefferkorn D; Binder WH; Kressler J
    Langmuir; 2009 Dec; 25(23):13328-31. PubMed ID: 19877703
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Temperature-dependent interfacial properties of hydrophobically end-modified poly(2-isopropyl-2-oxazoline)s assemblies at the air/water interface and on solid substrates.
    Obeid R; Park JY; Advincula RC; Winnik FM
    J Colloid Interface Sci; 2009 Dec; 340(2):142-52. PubMed ID: 19796770
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface chemical modification of poly(dimethylsiloxane)-based biomimetic materials: oil-repellent surfaces.
    Ghosh N; Bajoria A; Vaidya AA
    ACS Appl Mater Interfaces; 2009 Nov; 1(11):2636-44. PubMed ID: 20356137
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Probing diffusion of single nanoparticles at water-oil interfaces.
    Wang D; Yordanov S; Paroor HM; Mukhopadhyay A; Li CY; Butt HJ; Koynov K
    Small; 2011 Dec; 7(24):3502-7. PubMed ID: 22072585
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neutron reflectivity study of alkylated azacrown ether at the air-liquid and the liquid-liquid interfaces.
    Zarbakhsh A; Webster JR; Wojciechowski K
    Langmuir; 2009 Oct; 25(19):11569-75. PubMed ID: 19618924
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adsorbed and spread beta-casein monolayers at oil-water interfaces.
    Maldonado-Valderrama J; Gálvez-Ruiz MJ; Martín-Rodríguez A; Cabrerizo-Vílchez MA
    Langmuir; 2004 Jul; 20(15):6093-5. PubMed ID: 15248688
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Macroscopic and nanoscale study of wettability alteration of oil-wet calcite surface in presence of magnesium and sulfate ions.
    Karoussi O; Hamouda AA
    J Colloid Interface Sci; 2008 Jan; 317(1):26-34. PubMed ID: 17931645
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.