These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 20023954)

  • 1. Synthesis of InP nanofibers from tri(m-tolyl)phosphine: an alternative route to metal phosphide nanostructures.
    Wang J; Yang Q; Zhang Z; Li T; Zhang S
    Dalton Trans; 2010 Jan; (1):227-33. PubMed ID: 20023954
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A developed Ullmann reaction to III-V semiconductor nanocrystals in sealed vacuum tubes.
    Wang J; Yang Q
    Dalton Trans; 2008 Nov; (43):6060-6. PubMed ID: 19082064
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phase-controlled synthesis of transition-metal phosphide nanowires by Ullmann-type reactions.
    Wang J; Yang Q; Zhang Z; Sun S
    Chemistry; 2010 Jul; 16(26):7916-24. PubMed ID: 20491119
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of nanocrystal surface structure on the luminescence properties: photoemission study of HF-etched InP nanocrystals.
    Adam S; Talapin DV; Borchert H; Lobo A; McGinley C; de Castro AR; Haase M; Weller H; Möller T
    J Chem Phys; 2005 Aug; 123(8):084706. PubMed ID: 16164320
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Growth of InP nanostructures via reaction of indium droplets with phosphide ions: synthesis of InP quantum rods and InP-TiO2 composites.
    Nedeljković JM; Mićić OI; Ahrenkiel SP; Miedaner A; Nozik AJ
    J Am Chem Soc; 2004 Mar; 126(8):2632-9. PubMed ID: 14982473
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis of MnP nanocrystals by treatment of metal carbonyl complexes with phosphines: a new, versatile route to nanoscale transition metal phosphides.
    Perera SC; Tsoi G; Wenger LE; Brock SL
    J Am Chem Soc; 2003 Nov; 125(46):13960-1. PubMed ID: 14611223
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanosized Pd37(CO)28{P(p-Tolyl)3}12 containing geometrically unprecedented central 23-atom interpenetrating tri-icosahedral palladium kernel of double icosahedral units: its postulated metal-core evolution and resulting stereochemical implications.
    Mednikov EG; Dahl LF
    J Am Chem Soc; 2008 Nov; 130(44):14813-21. PubMed ID: 18839959
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Generalized synthesis of metal phosphide nanorods via thermal decomposition of continuously delivered metal-phosphine complexes using a syringe pump.
    Park J; Koo B; Yoon KY; Hwang Y; Kang M; Park JG; Hyeon T
    J Am Chem Soc; 2005 Jun; 127(23):8433-40. PubMed ID: 15941277
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Colloidal chemical synthesis and formation kinetics of uniformly sized nanocrystals of metals, oxides, and chalcogenides.
    Kwon SG; Hyeon T
    Acc Chem Res; 2008 Dec; 41(12):1696-709. PubMed ID: 18681462
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unconventional zigzag indium phosphide single-crystalline and twinned nanowires.
    Shen G; Bando Y; Liu B; Tang C; Golberg D
    J Phys Chem B; 2006 Oct; 110(41):20129-32. PubMed ID: 17034187
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rapid synthesis of high-quality InP nanocrystals.
    Xu S; Kumar S; Nann T
    J Am Chem Soc; 2006 Feb; 128(4):1054-5. PubMed ID: 16433503
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Soluble InP and GaP nanowires: self-seeded, solution-liquid-solid synthesis and electrical properties.
    Liu Z; Sun K; Jian WB; Xu D; Lin YF; Fang J
    Chemistry; 2009; 15(18):4546-52. PubMed ID: 19343761
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aqueous-solution growth of GaP and InP nanowires: a general route to phosphide, oxide, sulfide, and tungstate nanowires.
    Xiong Y; Xie Y; Li Z; Li X; Gao S
    Chemistry; 2004 Feb; 10(3):654-60. PubMed ID: 14767929
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of sterics in phosphine-ligated gold clusters.
    Parrish KA; King M; Ligare MR; Johnson GE; Hernández H
    Phys Chem Chem Phys; 2019 Jan; 21(4):1689-1699. PubMed ID: 30260357
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational study of the reaction of C6F6 with [IrMe(PEt3)3]: identification of a phosphine-assisted C-F activation pathway via a metallophosphorane intermediate.
    Erhardt S; Macgregor SA
    J Am Chem Soc; 2008 Nov; 130(46):15490-8. PubMed ID: 18950169
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bulky triarylarsines are effective ligands for palladium catalysed Heck olefination.
    Baber RA; Collard S; Hooper M; Orpen AG; Pringle PG; Wilkinson MJ; Wingad RL
    Dalton Trans; 2005 Apr; (8):1491-8. PubMed ID: 15824787
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid phosphine exchange on 1.5-nm gold nanoparticles.
    Petroski J; Chou MH; Creutz C
    Inorg Chem; 2004 Mar; 43(5):1597-9. PubMed ID: 14989649
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assembly of phosphide nanocrystals into porous networks: formation of InP gels and aerogels.
    Hitihami-Mudiyanselage A; Senevirathne K; Brock SL
    ACS Nano; 2013 Feb; 7(2):1163-70. PubMed ID: 23346878
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phosphine adsorption on the In-rich InP(001) surface: evidence of surface dative bonds at room temperature.
    Das U; Raghavachari K; Woo RL; Hicks RF
    Langmuir; 2007 Sep; 23(20):10109-15. PubMed ID: 17764199
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure and reactivity of bis(silyl) dihydride complexes (PMe(3))(3)Ru(SiR(3))(2)(H)(2): model compounds and real intermediates in a dehydrogenative C-Si bond forming reaction.
    Dioumaev VK; Yoo BR; Procopio LJ; Carroll PJ; Berry DH
    J Am Chem Soc; 2003 Jul; 125(29):8936-48. PubMed ID: 12862491
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.