These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 20023996)

  • 1. Metathesis catalysts in confining reaction fields--confinement effects vs. surface effects.
    Polarz S; Völker B; Jeremias F
    Dalton Trans; 2010 Jan; (2):577-84. PubMed ID: 20023996
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A materials approach to site-isolation of Grubbs catalysts from incompatible solvents and m-chloroperoxybenzoic acid.
    Mwangi MT; Runge MB; Hoak KM; Schulz MD; Bowden NB
    Chemistry; 2008; 14(22):6780-8. PubMed ID: 18563767
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemistry in confining reaction fields with special emphasis on nanoporous materials.
    Polarz S; Kuschel A
    Chemistry; 2008; 14(32):9816-29. PubMed ID: 18655089
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pyrolysis of phenethyl phenyl ether tethered in mesoporous silica. Effects of confinement and surface spacer molecules on product selectivity.
    Kidder MK; Chaffee AL; Nguyen MH; Buchanan AC
    J Org Chem; 2011 Aug; 76(15):6014-23. PubMed ID: 21696147
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nitro-substituted Hoveyda-Grubbs ruthenium carbenes: enhancement of catalyst activity through electronic activation.
    Michrowska A; Bujok R; Harutyunyan S; Sashuk V; Dolgonos G; Grela K
    J Am Chem Soc; 2004 Aug; 126(30):9318-25. PubMed ID: 15281822
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation of highly active silica-supported Au catalysts for CO oxidation by a solution-based technique.
    Zhu H; Liang C; Yan W; Overbury SH; Dai S
    J Phys Chem B; 2006 Jun; 110(22):10842-8. PubMed ID: 16771335
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Re-based heterogeneous catalysts for olefin metathesis prepared by surface organometallic chemistry: reactivity and selectivity.
    Chabanas M; Copéret C; Basset JM
    Chemistry; 2003 Feb; 9(4):971-5. PubMed ID: 12584713
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental and theoretical study on the olefin metathesis of alkenyl Baylis-Hillman adducts using second-generation Grubbs catalyst.
    Lee MJ; Lee KY; Lee JY; Kim JN
    Org Lett; 2004 Sep; 6(19):3313-6. PubMed ID: 15355040
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural and dynamical properties of guest molecules confined in mesoporous silica materials revealed by NMR.
    Buntkowsky G; Breitzke H; Adamczyk A; Roelofs F; Emmler T; Gedat E; Grünberg B; Xu Y; Limbach HH; Shenderovich I; Vyalikh A; Findenegg G
    Phys Chem Chem Phys; 2007 Sep; 9(35):4843-53. PubMed ID: 17912415
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rational approach to polymer-supported catalysts: synergy between catalytic reaction mechanism and polymer design.
    Madhavan N; Jones CW; Weck M
    Acc Chem Res; 2008 Sep; 41(9):1153-65. PubMed ID: 18793027
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Textural manipulation of mesoporous materials for hosting of metallic nanocatalysts.
    Sun J; Bao X
    Chemistry; 2008; 14(25):7478-88. PubMed ID: 18668502
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pyrolysis of mesoporous silica-immobilized 1,3-diphenylpropane. Impact of pore confinement and size.
    Kidder MK; Britt PF; Zhang Z; Dai S; Hagaman EW; Chaffee AL; Buchanan AC
    J Am Chem Soc; 2005 May; 127(17):6353-60. PubMed ID: 15853342
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Feasibility of associative mechanism in enyne metathesis catalyzed by grubbs complexes.
    García-Fandiño R; Castedo L; Granja JR; Cárdenas DJ
    Dalton Trans; 2007 Jul; (27):2925-34. PubMed ID: 17607407
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Beta-H transfer from the metallacyclobutane: a key step in the deactivation and byproduct formation for the well-defined silica-supported rhenium alkylidene alkene metathesis catalyst.
    Leduc AM; Salameh A; Soulivong D; Chabanas M; Basset JM; Copéret C; Solans-Monfort X; Clot E; Eisenstein O; Böhm VP; Röper M
    J Am Chem Soc; 2008 May; 130(19):6288-97. PubMed ID: 18402448
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functionalized mesoporous silicates for the removal of ruthenium from reaction mixtures.
    McEleney K; Allen DP; Holliday AE; Crudden CM
    Org Lett; 2006 Jun; 8(13):2663-6. PubMed ID: 16774226
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reactivity of Grubbs' catalysts with urea- and amide-substituted olefins. Metathesis and isomerization.
    Formentín P; Gimeno N; Steinke JH; Vilar R
    J Org Chem; 2005 Sep; 70(20):8235-8. PubMed ID: 16277358
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Controlling the selectivity of competitive nitroaldol condensation by using a bifunctionalized mesoporous silica nanosphere-based catalytic system.
    Huh S; Chen HT; Wiench JW; Pruski M; Lin VS
    J Am Chem Soc; 2004 Feb; 126(4):1010-1. PubMed ID: 14746455
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new concept for the noncovalent binding of a ruthenium-based olefin metathesis catalyst to polymeric phases: preparation of a catalyst on Raschig rings.
    Michrowska A; Mennecke K; Kunz U; Kirschning A; Grela K
    J Am Chem Soc; 2006 Oct; 128(40):13261-7. PubMed ID: 17017807
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanism and activity of ruthenium olefin metathesis catalysts: the role of ligands and substrates from a theoretical perspective.
    Adlhart C; Chen P
    J Am Chem Soc; 2004 Mar; 126(11):3496-510. PubMed ID: 15025477
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of confinement in carbon nanotubes on the activity of Fischer-Tropsch iron catalyst.
    Chen W; Fan Z; Pan X; Bao X
    J Am Chem Soc; 2008 Jul; 130(29):9414-9. PubMed ID: 18576652
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.