These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 20024038)

  • 1. Multifunctional plasmonic sensors on low-cost subwavelength metallic nanoholes arrays.
    Canpean V; Astilean S
    Lab Chip; 2009 Dec; 9(24):3574-9. PubMed ID: 20024038
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new generation of sensors based on extraordinary optical transmission.
    Gordon R; Sinton D; Kavanagh KL; Brolo AG
    Acc Chem Res; 2008 Aug; 41(8):1049-57. PubMed ID: 18605739
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On-chip surface-based detection with nanohole arrays.
    De Leebeeck A; Kumar LK; de Lange V; Sinton D; Gordon R; Brolo AG
    Anal Chem; 2007 Jun; 79(11):4094-100. PubMed ID: 17447728
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Propagating surface plasmon resonance on microhole arrays.
    Live LS; Bolduc OR; Masson JF
    Anal Chem; 2010 May; 82(9):3780-7. PubMed ID: 20356057
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Attomolar protein detection using in-hole surface plasmon resonance.
    Ferreira J; Santos MJ; Rahman MM; Brolo AG; Gordon R; Sinton D; Girotto EM
    J Am Chem Soc; 2009 Jan; 131(2):436-7. PubMed ID: 19140784
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optical aggregation of metal nanoparticles in a microfluidic channel for surface-enhanced Raman scattering analysis.
    Tong L; Righini M; Gonzalez MU; Quidant R; Käll M
    Lab Chip; 2009 Jan; 9(2):193-5. PubMed ID: 19107272
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-fidelity optofluidic on-chip sensors using well-defined gold nanowell crystals.
    Lee SY; Kim SH; Jang SG; Heo CJ; Shim JW; Yang SM
    Anal Chem; 2011 Dec; 83(23):9174-80. PubMed ID: 22017272
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Composite nanoparticle nanoslit arrays: a novel platform for LSPR mediated subwavelength optical transmission.
    Kofke MJ; Waldeck DH; Walker GC
    Opt Express; 2010 Apr; 18(8):7705-13. PubMed ID: 20588611
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Turning on resonant SERRS using the chromophore-plasmon coupling created by host-guest complexation at a plasmonic nanoarray.
    Witlicki EH; Andersen SS; Hansen SW; Jeppesen JO; Wong EW; Jensen L; Flood AH
    J Am Chem Soc; 2010 May; 132(17):6099-107. PubMed ID: 20387841
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiscale patterning of plasmonic metamaterials.
    Henzie J; Lee MH; Odom TW
    Nat Nanotechnol; 2007 Sep; 2(9):549-54. PubMed ID: 18654366
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Localized surface plasmon resonance detection of layered biointeractions on metallic subwavelength nanogratings.
    Kim K; Kim DJ; Moon S; Kim D; Byun KM
    Nanotechnology; 2009 Aug; 20(31):315501. PubMed ID: 19597249
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanohole arrays in chemical analysis: manufacturing methods and applications.
    Masson JF; Murray-Méthot MP; Live LS
    Analyst; 2010 Jul; 135(7):1483-9. PubMed ID: 20358096
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced fluorescence from arrays of nanoholes in a gold film.
    Brolo AG; Kwok SC; Moffitt MG; Gordon R; Riordon J; Kavanagh KL
    J Am Chem Soc; 2005 Oct; 127(42):14936-41. PubMed ID: 16231950
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single molecule analysis by surfaced-enhanced Raman scattering.
    Pieczonka NP; Aroca RF
    Chem Soc Rev; 2008 May; 37(5):946-54. PubMed ID: 18443680
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanoplasmonic biosensing with focus on short-range ordered nanoholes in thin metal films.
    Jonsson MP; Dahlin AB; Jönsson P; Höök F
    Biointerphases; 2008 Sep; 3(3):FD30-40. PubMed ID: 20408698
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Silica-stabilized gold island films for transmission localized surface plasmon sensing.
    Ruach-Nir I; Bendikov TA; Doron-Mor I; Barkay Z; Vaskevich A; Rubinstein I
    J Am Chem Soc; 2007 Jan; 129(1):84-92. PubMed ID: 17199286
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering.
    Driskell JD; Lipert RJ; Porter MD
    J Phys Chem B; 2006 Sep; 110(35):17444-51. PubMed ID: 16942083
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The plasmonic engineering of metal nanoparticles for enhanced fluorescence and Raman scattering.
    Cade NI; Ritman-Meer T; Kwaka K; Richards D
    Nanotechnology; 2009 Jul; 20(28):285201. PubMed ID: 19546490
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Localized surface plasmon resonance biosensor integrated with microfluidic chip.
    Huang C; Bonroy K; Reekmans G; Laureyn W; Verhaegen K; De Vlaminck I; Lagae L; Borghs G
    Biomed Microdevices; 2009 Aug; 11(4):893-901. PubMed ID: 19353272
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Noble metal nanocrystals: plasmon electron transfer photochemistry and single-molecule Raman spectroscopy.
    Brus L
    Acc Chem Res; 2008 Dec; 41(12):1742-9. PubMed ID: 18783255
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.