These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

350 related articles for article (PubMed ID: 20024051)

  • 1. In situ generation of pH gradients in microfluidic devices for biofabrication of freestanding, semi-permeable chitosan membranes.
    Luo X; Berlin DL; Betz J; Payne GF; Bentley WE; Rubloff GW
    Lab Chip; 2010 Jan; 10(1):59-65. PubMed ID: 20024051
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chitosan-mediated in situ biomolecule assembly in completely packaged microfluidic devices.
    Park JJ; Luo X; Yi H; Valentine TM; Payne GF; Bentley WE; Ghodssi R; Rubloff GW
    Lab Chip; 2006 Oct; 6(10):1315-21. PubMed ID: 17102845
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitatively controlled in situ formation of hydrogel membranes in microchannels for generation of stable chemical gradients.
    Choi E; Jun I; Chang HK; Park KM; Shin H; Park KD; Park J
    Lab Chip; 2012 Jan; 12(2):302-8. PubMed ID: 22108911
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Study of albumin and fibrinogen membranes formed by interfacial crosslinking using microfluidic flow.
    Chang H; Khan R; Rong Z; Sapelkin A; Vadgama P
    Biofabrication; 2010 Sep; 2(3):035002. PubMed ID: 20823505
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biofabrication with chitosan.
    Yi H; Wu LQ; Bentley WE; Ghodssi R; Rubloff GW; Culver JN; Payne GF
    Biomacromolecules; 2005; 6(6):2881-94. PubMed ID: 16283704
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Manufacturing monodisperse chitosan microparticles containing ampicillin using a microchannel chip.
    Yang CH; Huang KS; Chang JY
    Biomed Microdevices; 2007 Apr; 9(2):253-9. PubMed ID: 17180710
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Generation of linear and non-linear concentration gradients along microfluidic channel by microtunnel controlled stepwise addition of sample solution.
    Li CW; Chen R; Yang M
    Lab Chip; 2007 Oct; 7(10):1371-3. PubMed ID: 17896024
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrochemically controlled growth and positioning of suspended collagen membranes.
    Baker HR; S EF; Poduska KM
    Langmuir; 2008 Apr; 24(7):2970-2. PubMed ID: 18324862
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation of monodispersed chitosan microspheres and in situ encapsulation of BSA in a co-axial microfluidic device.
    Xu JH; Li SW; Tostado C; Lan WJ; Luo GS
    Biomed Microdevices; 2009 Feb; 11(1):243-9. PubMed ID: 18810642
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polymersome production on a microfluidic platform using pH sensitive block copolymers.
    Brown L; McArthur SL; Wright PC; Lewis A; Battaglia G
    Lab Chip; 2010 Aug; 10(15):1922-8. PubMed ID: 20480087
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microfluidic operations using deformable polymer membranes fabricated by single layer soft lithography.
    Sundararajan N; Kim D; Berlin AA
    Lab Chip; 2005 Mar; 5(3):350-4. PubMed ID: 15726212
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Monodisperse semi-permeable microcapsules for continuous observation of cells.
    Morimoto Y; Tan WH; Tsuda Y; Takeuchi S
    Lab Chip; 2009 Aug; 9(15):2217-23. PubMed ID: 19606299
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fine temporal control of the medium gas content and acidity and on-chip generation of series of oxygen concentrations for cell cultures.
    Polinkovsky M; Gutierrez E; Levchenko A; Groisman A
    Lab Chip; 2009 Apr; 9(8):1073-84. PubMed ID: 19350089
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microfluidic partition with in situ biofabricated semipermeable biopolymer membranes for static gradient generation.
    Luo X; Vo T; Jambi F; Pham P; Choy JS
    Lab Chip; 2016 Sep; 16(19):3815-3823. PubMed ID: 27713976
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A multi-layer microfluidic device for efficient culture and analysis of renal tubular cells.
    Jang KJ; Suh KY
    Lab Chip; 2010 Jan; 10(1):36-42. PubMed ID: 20024048
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bacteria concentration using a membrane type insulator-based dielectrophoresis in a plastic chip.
    Cho YK; Kim S; Lee K; Park C; Lee JG; Ko C
    Electrophoresis; 2009 Sep; 30(18):3153-9. PubMed ID: 19722215
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microfluidic probe: a new tool for integrating microfluidic environments and electronic wafer-probing.
    Routenberg DA; Reed MA
    Lab Chip; 2010 Jan; 10(1):123-7. PubMed ID: 20024060
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Embellishment of microfluidic devices via femtosecond laser micronanofabrication for chip functionalization.
    Wang J; He Y; Xia H; Niu LG; Zhang R; Chen QD; Zhang YL; Li YF; Zeng SJ; Qin JH; Lin BC; Sun HB
    Lab Chip; 2010 Aug; 10(15):1993-6. PubMed ID: 20508876
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integration of nanoporous membranes into microfluidic devices: electrokinetic bio-sample pre-concentration.
    Kim M; Kim T
    Analyst; 2013 Oct; 138(20):6007-15. PubMed ID: 23951567
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chitosan-coated silica as a solid phase for RNA purification in a microfluidic device.
    Hagan KA; Meier WL; Ferrance JP; Landers JP
    Anal Chem; 2009 Jul; 81(13):5249-56. PubMed ID: 19514712
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.