BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 20024143)

  • 1. Total synthesis of Le(A)-LacNAc pentasaccharide as a ligand for Clostridium difficile toxin A.
    Zhang P; Ng K; Ling CC
    Org Biomol Chem; 2010 Jan; 8(1):128-36. PubMed ID: 20024143
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional properties of the carboxy-terminal host cell-binding domains of the two toxins, TcdA and TcdB, expressed by Clostridium difficile.
    Dingle T; Wee S; Mulvey GL; Greco A; Kitova EN; Sun J; Lin S; Klassen JS; Palcic MM; Ng KK; Armstrong GD
    Glycobiology; 2008 Sep; 18(9):698-706. PubMed ID: 18509107
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carbohydrate recognition by Clostridium difficile toxin A.
    Greco A; Ho JG; Lin SJ; Palcic MM; Rupnik M; Ng KK
    Nat Struct Mol Biol; 2006 May; 13(5):460-1. PubMed ID: 16622409
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Binding of Clostridium difficile toxins to human milk oligosaccharides.
    El-Hawiet A; Kitova EN; Kitov PI; Eugenio L; Ng KK; Mulvey GL; Dingle TC; Szpacenko A; Armstrong GD; Klassen JS
    Glycobiology; 2011 Sep; 21(9):1217-27. PubMed ID: 21610194
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Clostridium difficile toxins: more than mere inhibitors of Rho proteins.
    Genth H; Dreger SC; Huelsenbeck J; Just I
    Int J Biochem Cell Biol; 2008; 40(4):592-7. PubMed ID: 18289919
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Release of TcdA and TcdB from Clostridium difficile cdi 630 is not affected by functional inactivation of the tcdE gene.
    Olling A; Seehase S; Minton NP; Tatge H; Schröter S; Kohlscheen S; Pich A; Just I; Gerhard R
    Microb Pathog; 2012 Jan; 52(1):92-100. PubMed ID: 22107906
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of Oligosaccharides in Human Milk Bound onto the Toxin A Carbohydrate Binding Site of Clostridium difficile.
    Nguyen TT; Kim JW; Park JS; Hwang KH; Jang TS; Kim CH; Kim D
    J Microbiol Biotechnol; 2016 Apr; 26(4):659-65. PubMed ID: 26718473
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unexpected structure of a C. difficile toxin A ligand necessitates an annotation correction in a popular screening library.
    Zhang P; Razi N; Eugenio L; Fentabil M; Kitova EN; Klassen JS; Bundle DR; Ng KK; Ling CC
    Chem Commun (Camb); 2011 Dec; 47(45):12397-9. PubMed ID: 22016886
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The distribution and density of Clostridium difficile toxin receptors on the intestinal mucosa of neonatal pigs.
    Keel MK; Songer JG
    Vet Pathol; 2007 Nov; 44(6):814-22. PubMed ID: 18039894
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of VIDAS CDAB and CDA immunoassay for the detection of Clostridium difficile in a tcdA- tcdB+ C. difficile prevalent area.
    Shin BM; Lee EJ; Kuak EY; Yoo SJ
    Anaerobe; 2009 Dec; 15(6):266-9. PubMed ID: 19772927
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lectin Activity of the TcdA and TcdB Toxins of Clostridium difficile.
    Hartley-Tassell LE; Awad MM; Seib KL; Scarselli M; Savino S; Tiralongo J; Lyras D; Day CJ; Jennings MP
    Infect Immun; 2019 Mar; 87(3):. PubMed ID: 30530621
    [No Abstract]   [Full Text] [Related]  

  • 12. Toxin A-negative, toxin B-positive Clostridium difficile.
    Drudy D; Fanning S; Kyne L
    Int J Infect Dis; 2007 Jan; 11(1):5-10. PubMed ID: 16857405
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The structure of Clostridium difficile toxin A glucosyltransferase domain bound to Mn2+ and UDP provides insights into glucosyltransferase activity and product release.
    D'Urzo N; Malito E; Biancucci M; Bottomley MJ; Maione D; Scarselli M; Martinelli M
    FEBS J; 2012 Sep; 279(17):3085-97. PubMed ID: 22747490
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New multiplex PCR method for the detection of Clostridium difficile toxin A (tcdA) and toxin B (tcdB) and the binary toxin (cdtA/cdtB) genes applied to a Danish strain collection.
    Persson S; Torpdahl M; Olsen KE
    Clin Microbiol Infect; 2008 Nov; 14(11):1057-64. PubMed ID: 19040478
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Serine-71 phosphorylation of Rac1/Cdc42 diminishes the pathogenic effect of Clostridium difficile toxin A.
    Schoentaube J; Olling A; Tatge H; Just I; Gerhard R
    Cell Microbiol; 2009 Dec; 11(12):1816-26. PubMed ID: 19709124
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular methods to study transcriptional regulation of Clostridium difficile toxin genes.
    Antunes A; Dupuy B
    Methods Mol Biol; 2010; 646():93-115. PubMed ID: 20597005
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High temporal resolution of glucosyltransferase dependent and independent effects of Clostridium difficile toxins across multiple cell types.
    D'Auria KM; Bloom MJ; Reyes Y; Gray MC; van Opstal EJ; Papin JA; Hewlett EL
    BMC Microbiol; 2015 Feb; 15(1):7. PubMed ID: 25648517
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Toxin production by and adhesive properties of Clostridium difficile isolated from humans and horses with antibiotic-associated diarrhea.
    Taha S; Johansson O; Rivera Jonsson S; Heimer D; Krovacek K
    Comp Immunol Microbiol Infect Dis; 2007 May; 30(3):163-74. PubMed ID: 17239950
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of the pathogenicity locus in Clostridium difficile strains.
    Cohen SH; Tang YJ; Silva J
    J Infect Dis; 2000 Feb; 181(2):659-63. PubMed ID: 10669352
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bacteremia with a large clostridial toxin-negative, binary toxin-positive strain of Clostridium difficile.
    Elliott B; Reed R; Chang BJ; Riley TV
    Anaerobe; 2009 Dec; 15(6):249-51. PubMed ID: 19723585
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.