BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 20024143)

  • 21. Heterogeneity of large clostridial toxins: importance of Clostridium difficile toxinotypes.
    Rupnik M
    FEMS Microbiol Rev; 2008 May; 32(3):541-55. PubMed ID: 18397287
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structural characterization of the cell wall binding domains of Clostridium difficile toxins A and B; evidence that Ca2+ plays a role in toxin A cell surface association.
    Demarest SJ; Salbato J; Elia M; Zhong J; Morrow T; Holland T; Kline K; Woodnutt G; Kimmel BE; Hansen G
    J Mol Biol; 2005 Mar; 346(5):1197-206. PubMed ID: 15713474
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biochemical and Immunological Characterization of Truncated Fragments of the Receptor-Binding Domains of C. difficile Toxin A.
    Huang JH; Shen ZQ; Lien SP; Hsiao KN; Leng CH; Chen CC; Siu LK; Chong PC
    PLoS One; 2015; 10(8):e0135045. PubMed ID: 26271033
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The C-terminal ligand-binding domain of Clostridium difficile toxin A (TcdA) abrogates TcdA-specific binding to cells and prevents mouse lethality.
    Sauerborn M; Leukel P; von Eichel-Streiber C
    FEMS Microbiol Lett; 1997 Oct; 155(1):45-54. PubMed ID: 9345763
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Substrate specificity of clostridial glucosylating toxins and their function on colonocytes analyzed by proteomics techniques.
    Zeiser J; Gerhard R; Just I; Pich A
    J Proteome Res; 2013 Apr; 12(4):1604-18. PubMed ID: 23387933
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Emerging toxin A-B+ variant strain of Clostridium difficile responsible for pseudomembranous colitis at a tertiary care hospital in Korea.
    Shin BM; Kuak EY; Yoo SJ; Shin WC; Yoo HM
    Diagn Microbiol Infect Dis; 2008 Apr; 60(4):333-7. PubMed ID: 18082994
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Laboratory-based evaluation of TOX A/B QUIK CHEK "NISSUI" to detect toxins A and B of clostridium difficile].
    Nakasone I; Shiohira CM; Yamane N
    Rinsho Biseibutshu Jinsoku Shindan Kenkyukai Shi; 2007; 18(2):109-16. PubMed ID: 18154439
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cellular uptake of Clostridium difficile TcdA and truncated TcdA lacking the receptor binding domain.
    Gerhard R; Frenzel E; Goy S; Olling A
    J Med Microbiol; 2013 Sep; 62(Pt 9):1414-1422. PubMed ID: 23558138
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Co-culture with potentially probiotic microorganisms antagonises virulence factors of Clostridium difficile in vitro.
    Trejo FM; Pérez PF; De Antoni GL
    Antonie Van Leeuwenhoek; 2010 Jun; 98(1):19-29. PubMed ID: 20232250
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Profile of toxigenicity of Clostridium difficile strains isolated from paediatric patients with clinical diagnosis of antibiotic associated diarrhea (AAD)].
    Wultańska D; Pituch H; Obuch-Woszczatyński P; Meisel-Mikołajczyk F; Luczak M
    Med Dosw Mikrobiol; 2005; 57(4):377-82. PubMed ID: 16773831
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Evidence for dual receptor-binding sites in Clostridium difficile toxin A.
    Lambert GS; Baldwin MR
    FEBS Lett; 2016 Dec; 590(24):4550-4563. PubMed ID: 27861794
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Clostridium difficile toxins facilitate bacterial colonization by modulating the fence and gate function of colonic epithelium.
    Kasendra M; Barrile R; Leuzzi R; Soriani M
    J Infect Dis; 2014 Apr; 209(7):1095-104. PubMed ID: 24273043
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Processing of Clostridium difficile toxins.
    Giesemann T; Egerer M; Jank T; Aktories K
    J Med Microbiol; 2008 Jun; 57(Pt 6):690-696. PubMed ID: 18480324
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Surface proteins from Lactobacillus kefir antagonize in vitro cytotoxic effect of Clostridium difficile toxins.
    Carasi P; Trejo FM; Pérez PF; De Antoni GL; Serradell Mde L
    Anaerobe; 2012 Feb; 18(1):135-42. PubMed ID: 22126976
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Clinical correlation of toxin and common antigen enzyme immunoassay testing in patients with Clostridium difficile disease.
    Lee SD; Turgeon DK; Ko CW; Fritsche TR; Surawicz CM
    Am J Gastroenterol; 2003 Jul; 98(7):1569-72. PubMed ID: 12873579
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Human Serum Albumin Is an Essential Component of the Host Defense Mechanism Against Clostridium difficile Intoxication.
    di Masi A; Leboffe L; Polticelli F; Tonon F; Zennaro C; Caterino M; Stano P; Fischer S; Hägele M; Müller M; Kleger A; Papatheodorou P; Nocca G; Arcovito A; Gori A; Ruoppolo M; Barth H; Petrosillo N; Ascenzi P; Di Bella S
    J Infect Dis; 2018 Sep; 218(9):1424-1435. PubMed ID: 29868851
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Recognition of human milk oligosaccharides by bacterial exotoxins.
    El-Hawiet A; Kitova EN; Klassen JS
    Glycobiology; 2015 Aug; 25(8):845-54. PubMed ID: 25941008
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Clostridium difficile PSI polysaccharide: synthesis of pentasaccharide repeating block, conjugation to exotoxin B subunit, and detection of natural anti-PSI IgG antibodies in horse serum.
    Jiao Y; Ma Z; Hodgins D; Pequegnat B; Bertolo L; Arroyo L; Monteiro MA
    Carbohydr Res; 2013 Aug; 378():15-25. PubMed ID: 23597587
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Adaptation of Clostridium difficile toxin A for use as a protein translocation system.
    Kern SM; Feig AL
    Biochem Biophys Res Commun; 2011 Feb; 405(4):570-4. PubMed ID: 21266163
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The attachment, internalization, and time-dependent, intracellular distribution of Clostridium difficile toxin A in porcine intestinal explants.
    Keel MK; Songer JG
    Vet Pathol; 2011 Mar; 48(2):369-80. PubMed ID: 20861504
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.