BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 20024165)

  • 1. Fluence rate-dependent intratumor heterogeneity in physiologic and cytotoxic responses to Photofrin photodynamic therapy.
    Busch TM; Xing X; Yu G; Yodh A; Wileyto EP; Wang HW; Durduran T; Zhu TC; Wang KK
    Photochem Photobiol Sci; 2009 Dec; 8(12):1683-93. PubMed ID: 20024165
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photodynamic therapy creates fluence rate-dependent gradients in the intratumoral spatial distribution of oxygen.
    Busch TM; Wileyto EP; Emanuele MJ; Del Piero F; Marconato L; Glatstein E; Koch CJ
    Cancer Res; 2002 Dec; 62(24):7273-9. PubMed ID: 12499269
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Comparison of Dose Metrics to Predict Local Tumor Control for Photofrin-mediated Photodynamic Therapy.
    Qiu H; Kim MM; Penjweini R; Finlay JC; Busch TM; Wang T; Guo W; Cengel KA; Simone CB; Glatstein E; Zhu TC
    Photochem Photobiol; 2017 Jul; 93(4):1115-1122. PubMed ID: 28083883
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of fluence rate on tumor and normal tissue responses to photodynamic therapy.
    Sitnik TM; Henderson BW
    Photochem Photobiol; 1998 Apr; 67(4):462-6. PubMed ID: 9559590
    [TBL] [Abstract][Full Text] [Related]  

  • 5.
    Penjweini R; Kim MM; Ong YH; Zhu TC
    Phys Med Biol; 2020 Jan; 65(3):03LT01. PubMed ID: 31751964
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of fractionation and fluence rate in photodynamic therapy with Photofrin or mTHPC.
    van Geel IP; Oppelaar H; Marijnissen JP; Stewart FA
    Radiat Res; 1996 May; 145(5):602-9. PubMed ID: 8619026
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reduction of tumour oxygenation during and after photodynamic therapy in vivo: effects of fluence rate.
    Sitnik TM; Hampton JA; Henderson BW
    Br J Cancer; 1998 May; 77(9):1386-94. PubMed ID: 9652753
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vivo resistance to photofrin-mediated photodynamic therapy in radiation-induced fibrosarcoma cells resistant to in vitro Photofrin-mediated photodynamic therapy.
    Adams K; Rainbow AJ; Wilson BC; Singh G
    J Photochem Photobiol B; 1999 Apr; 49(2-3):136-41. PubMed ID: 10392463
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Macroscopic singlet oxygen modeling for dosimetry of Photofrin-mediated photodynamic therapy: an in-vivo study.
    Qiu H; Kim MM; Penjweini R; Zhu TC
    J Biomed Opt; 2016 Aug; 21(8):88002. PubMed ID: 27552311
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxygen limitation of direct tumor cell kill during photodynamic treatment of a murine tumor model.
    Henderson BW; Fingar VH
    Photochem Photobiol; 1989 Mar; 49(3):299-304. PubMed ID: 2525260
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Choice of oxygen-conserving treatment regimen determines the inflammatory response and outcome of photodynamic therapy of tumors.
    Henderson BW; Gollnick SO; Snyder JW; Busch TM; Kousis PC; Cheney RT; Morgan J
    Cancer Res; 2004 Mar; 64(6):2120-6. PubMed ID: 15026352
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fluence rate as a modulator of PDT mechanisms.
    Henderson BW; Busch TM; Snyder JW
    Lasers Surg Med; 2006 Jun; 38(5):489-93. PubMed ID: 16615136
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photofrin
    Baran TM
    Lasers Surg Med; 2018 Jul; 50(5):476-482. PubMed ID: 29214668
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reactive oxygen species explicit dosimetry to predict tumor growth for benzoporphyrin derivative-mediated vascular photodynamic therapy.
    Sheng T; Ong YH; Guo W; Zhu T
    J Biomed Opt; 2020 Jan; 25(6):1-13. PubMed ID: 31912689
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Irradiance, Photofrin
    Oakley E; Bellnier D; Hutson A; Cooper H; Habitzruther M; Sexton S; Curtin L; Tworek L; Mallory M; Henderson B; Shafirstein G
    Photochem Photobiol; 2020 Mar; 96(2):397-404. PubMed ID: 31887227
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comparative analysis of silicon phthalocyanine photosensitizers for in vivo photodynamic therapy of RIF-1 tumors in C3H mice.
    Anderson CY; Freye K; Tubesing KA; Li YS; Kenney ME; Mukhtar H; Elmets CA
    Photochem Photobiol; 1998 Mar; 67(3):332-6. PubMed ID: 9523532
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Depletion of tumor oxygenation during photodynamic therapy: detection by the hypoxia marker EF3 [2-(2-nitroimidazol-1[H]-yl)-N-(3,3,3-trifluoropropyl)acetamide ].
    Busch TM; Hahn SM; Evans SM; Koch CJ
    Cancer Res; 2000 May; 60(10):2636-42. PubMed ID: 10825135
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of the 2-(1-Hexyloxyethyl)-2-devinyl pyropheophorbide (HPPH) mediated photodynamic therapy by macroscopic singlet oxygen modeling.
    Penjweini R; Kim MM; Liu B; Zhu TC
    J Biophotonics; 2016 Dec; 9(11-12):1344-1354. PubMed ID: 27653233
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hyperoxygenation enhances the tumor cell killing of photofrin-mediated photodynamic therapy.
    Huang Z; Chen Q; Shakil A; Chen H; Beckers J; Shapiro H; Hetzel FW
    Photochem Photobiol; 2003 Nov; 78(5):496-502. PubMed ID: 14653582
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Irradiance controls photodynamic efficacy and tissue heating in experimental tumours: implication for interstitial PDT of locally advanced cancer.
    Shafirstein G; Bellnier DA; Oakley E; Hamilton S; Habitzruther M; Tworek L; Hutson A; Spernyak JA; Sexton S; Curtin L; Turowski SG; Arshad H; Henderson B
    Br J Cancer; 2018 Nov; 119(10):1191-1199. PubMed ID: 30353043
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.