These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 20024184)
1. High throughput screening of lead utilising disposable screen printed shallow recessed microelectrode arrays. Hood SJ; Kadara RO; Kampouris DK; Banks CE Analyst; 2010 Jan; 135(1):76-9. PubMed ID: 20024184 [TBL] [Abstract][Full Text] [Related]
2. Why 'the bigger the better' is not always the case when utilising microelectrode arrays: high density vs. low density arrays for the electroanalytical sensing of chromium(VI). Hood SJ; Kampouris DK; Kadara RO; Jenkinson N; del Campo FJ; Muñoz FX; Banks CE Analyst; 2009 Nov; 134(11):2301-5. PubMed ID: 19838419 [TBL] [Abstract][Full Text] [Related]
3. Chemical amination of graphene oxides and their extraordinary properties in the detection of lead ions. Wang B; Luo B; Liang M; Wang A; Wang J; Fang Y; Chang Y; Zhi L Nanoscale; 2011 Dec; 3(12):5059-66. PubMed ID: 22041992 [TBL] [Abstract][Full Text] [Related]
4. Sensitive adsorptive stripping voltammetric method for determination of lead in water using multivariate analysis for optimization. Espada-Bellido E; Galindo-Riaño MD; García-Vargas M J Hazard Mater; 2009 Jul; 166(2-3):1326-31. PubMed ID: 19167155 [TBL] [Abstract][Full Text] [Related]
5. Boron-doped diamond microdisc arrays: electrochemical characterisation and their use as a substrate for the production of microelectrode arrays of diverse metals (Ag, Au, Cu)via electrodeposition. Simm AO; Banks CE; Ward-Jones S; Davies TJ; Lawrence NS; Jones TG; Jiang L; Compton RG Analyst; 2005 Sep; 130(9):1303-11. PubMed ID: 16096678 [TBL] [Abstract][Full Text] [Related]
6. Electroanalytical method for determination of lead(II) in orange and apple using kaolin modified platinum electrode. El Mhammedi MA; Achak M; Bakasse M; Chtaini A Chemosphere; 2009 Aug; 76(8):1130-4. PubMed ID: 19457540 [TBL] [Abstract][Full Text] [Related]
7. Flow electrochemical analyses of zinc by stripping voltammetry on graphite felt electrode. Feier B; Floner D; Cristea C; Bodoki E; Sandulescu R; Geneste F Talanta; 2012 Aug; 98():152-6. PubMed ID: 22939141 [TBL] [Abstract][Full Text] [Related]
9. Part two: Analytical optimisation of a procedure for lead detection in milk by means of bismuth-modified screen-printed electrodes. Calvo Quintana J; Arduini F; Amine A; van Velzen K; Palleschi G; Moscone D Anal Chim Acta; 2012 Jul; 736():92-9. PubMed ID: 22769010 [TBL] [Abstract][Full Text] [Related]
10. Forensic electrochemistry: the electroanalytical sensing of Rohypnol® (flunitrazepam) using screen-printed graphite electrodes without recourse for electrode or sample pre-treatment. Smith JP; Metters JP; Kampouris DK; Lledo-Fernandez C; Sutcliffe OB; Banks CE Analyst; 2013 Oct; 138(20):6185-91. PubMed ID: 23971077 [TBL] [Abstract][Full Text] [Related]
11. Graphite screen printed electrodes for the electrochemical sensing of chromium(VI). Hallam PM; Kampouris DK; Kadara RO; Banks CE Analyst; 2010 Aug; 135(8):1947-52. PubMed ID: 20532266 [TBL] [Abstract][Full Text] [Related]
12. Inorganic arsenic speciation in water and seawater by anodic stripping voltammetry with a gold microelectrode. Salaün P; Planer-Friedrich B; van den Berg CM Anal Chim Acta; 2007 Mar; 585(2):312-22. PubMed ID: 17386680 [TBL] [Abstract][Full Text] [Related]
14. Characterization of the gold-catalyzed deposition of silver on graphite screen-printed electrodes and their application to the development of impedimetric immunosensors. Vig A; Muñoz-Berbel X; Radoi A; Cortina-Puig M; Marty JL Talanta; 2009 Dec; 80(2):942-6. PubMed ID: 19836576 [TBL] [Abstract][Full Text] [Related]
15. Sensitive and stable monitoring of lead and cadmium in seawater using screen-printed electrode and electrochemical stripping analysis. Güell R; Aragay G; Fontàs C; Anticó E; Merkoçi A Anal Chim Acta; 2008 Oct; 627(2):219-24. PubMed ID: 18809076 [TBL] [Abstract][Full Text] [Related]
16. Electroanalytical sensing of chromium(III) and (VI) utilising gold screen printed macro electrodes. Metters JP; Kadara RO; Banks CE Analyst; 2012 Feb; 137(4):896-902. PubMed ID: 22228309 [TBL] [Abstract][Full Text] [Related]
17. Modification of carbon screen-printed electrodes by adsorption of chemically synthesized Bi nanoparticles for the voltammetric stripping detection of Zn(II), Cd(II) and Pb(II). Rico MA; Olivares-Marín M; Gil EP Talanta; 2009 Dec; 80(2):631-5. PubMed ID: 19836530 [TBL] [Abstract][Full Text] [Related]
18. Towards the electrochemical quantification of the strength of garlic. Martindale BC; Aldous L; Rees NV; Compton RG Analyst; 2011 Jan; 136(1):128-33. PubMed ID: 21049110 [TBL] [Abstract][Full Text] [Related]
19. Nanomaterial/ionophore-based electrode for anodic stripping voltammetric determination of lead: an electrochemical sensing platform toward heavy metals. Pan D; Wang Y; Chen Z; Lou T; Qin W Anal Chem; 2009 Jun; 81(12):5088-94. PubMed ID: 19435334 [TBL] [Abstract][Full Text] [Related]
20. Addressable electrode array device with IDA electrodes for high-throughput detection. Ino K; Saito W; Koide M; Umemura T; Shiku H; Matsue T Lab Chip; 2011 Feb; 11(3):385-8. PubMed ID: 21152636 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]