BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 20024271)

  • 1. Enhanced lithium storage capacity and cyclic performance of nanostructured TiO2-MoO3 hybrid electrode.
    Paek SM; Kang JH; Jung H; Hwang SJ; Choy JH
    Chem Commun (Camb); 2009 Dec; (48):7536-8. PubMed ID: 20024271
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In situ synthesis of high-loading Li4Ti5O12-graphene hybrid nanostructures for high rate lithium ion batteries.
    Shen L; Yuan C; Luo H; Zhang X; Yang S; Lu X
    Nanoscale; 2011 Feb; 3(2):572-4. PubMed ID: 21076732
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced Li storage performance of ordered mesoporous MoO2 via tungsten doping.
    Fang X; Guo B; Shi Y; Li B; Hua C; Yao C; Zhang Y; Hu YS; Wang Z; Stucky GD; Chen L
    Nanoscale; 2012 Mar; 4(5):1541-4. PubMed ID: 22294160
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interconnected MoO2 nanocrystals with carbon nanocoating as high-capacity anode materials for lithium-ion batteries.
    Zhou L; Wu HB; Wang Z; Lou XW
    ACS Appl Mater Interfaces; 2011 Dec; 3(12):4853-7. PubMed ID: 22077330
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Graphene-supported anatase TiO2 nanosheets for fast lithium storage.
    Ding S; Chen JS; Luan D; Boey FY; Madhavi S; Lou XW
    Chem Commun (Camb); 2011 May; 47(20):5780-2. PubMed ID: 21494738
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Graphene-wrapped TiO2 hollow structures with enhanced lithium storage capabilities.
    Chen JS; Wang Z; Dong XC; Chen P; Lou XW
    Nanoscale; 2011 May; 3(5):2158-61. PubMed ID: 21479308
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Graphene anchored with co(3)o(4) nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance.
    Wu ZS; Ren W; Wen L; Gao L; Zhao J; Chen Z; Zhou G; Li F; Cheng HM
    ACS Nano; 2010 Jun; 4(6):3187-94. PubMed ID: 20455594
    [TBL] [Abstract][Full Text] [Related]  

  • 8. One-pot synthesis of uniform carbon-coated MoO(2) nanospheres for high-rate reversible lithium storage.
    Wang Z; Chen JS; Zhu T; Madhavi S; Lou XW
    Chem Commun (Camb); 2010 Oct; 46(37):6906-8. PubMed ID: 20730195
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly Reversible Lithium-ions Storage of Molybdenum Dioxide Nanoplates for High Power Lithium-ion Batteries.
    Liu X; Yang J; Hou W; Wang J; Nuli Y
    ChemSusChem; 2015 Aug; 8(16):2621-4. PubMed ID: 26183572
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The interplay of crystallization kinetics and morphology in nanostructured W/Mo oxide formation: an in situ diffraction study.
    Zhou Y; Pienack N; Bensch W; Patzke GR
    Small; 2009 Sep; 5(17):1978-83. PubMed ID: 19548277
    [No Abstract]   [Full Text] [Related]  

  • 11. Biomimetic layer-by-layer Co-mineralization approach towards TiO2/Au nanosheets with high rate performance for lithium ion batteries.
    Hao B; Yan Y; Wang X; Chen G
    Nanoscale; 2013 Nov; 5(21):10472-80. PubMed ID: 24057028
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Layered titanate-zinc oxide nanohybrids with mesoporosity.
    Kim TW; Hur SG; Hwang SJ; Choy JH
    Chem Commun (Camb); 2006 Jan; (2):220-2. PubMed ID: 16372112
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Construction of Cu3Mo2O9 nanoplates with excellent lithium storage properties based on a pH-dependent dimensional change.
    Xia J; Song le X; Liu W; Teng Y; Zhao L; Wang QS; Ruan MM
    Dalton Trans; 2015 Aug; 44(30):13450-4. PubMed ID: 26151316
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Layered titanium disilicide stabilized by oxide coating for highly reversible lithium insertion and extraction.
    Zhou S; Simpson ZI; Yang X; Wang D
    ACS Nano; 2012 Sep; 6(9):8114-9. PubMed ID: 22917056
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis of nanometre-thick MoO3 sheets.
    Kalantar-zadeh K; Tang J; Wang M; Wang KL; Shailos A; Galatsis K; Kojima R; Strong V; Lech A; Wlodarski W; Kaner RB
    Nanoscale; 2010 Mar; 2(3):429-33. PubMed ID: 20644828
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hierarchical protonated titanate nanostructures for lithium-ion batteries.
    Zhang Y; Tang Y; Yin S; Zeng Z; Zhang H; Li CM; Dong Z; Chen Z; Chen X
    Nanoscale; 2011 Oct; 3(10):4074-7. PubMed ID: 21853212
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication and photocatalytic activity of TiO2/MoO3 particulate films.
    Natori H; Kobayashi K; Takahashi M
    J Oleo Sci; 2009; 58(4):203-11. PubMed ID: 19282643
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wet chemical synthesis of Cu/TiO2 nanocomposites with integrated nano-current-collectors as high-rate anode materials in lithium-ion batteries.
    Cao FF; Xin S; Guo YG; Wan LJ
    Phys Chem Chem Phys; 2011 Feb; 13(6):2014-20. PubMed ID: 21203647
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Building one-dimensional oxide nanostructure arrays on conductive metal substrates for lithium-ion battery anodes.
    Jiang J; Li Y; Liu J; Huang X
    Nanoscale; 2011 Jan; 3(1):45-58. PubMed ID: 20978657
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanostructured α-MoO3 thin film as a highly selective TMA sensor.
    Pandeeswari R; Jeyaprakash BG
    Biosens Bioelectron; 2014 Mar; 53():182-6. PubMed ID: 24140834
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.