These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 20024616)

  • 1. Influence of phosphorus on copper sensitivity of fluvial periphyton: the role of chemical, physiological and community-related factors.
    Serra A; Guasch H; Admiraal W; Van der Geest HG; Van Beusekom SA
    Ecotoxicology; 2010 Apr; 19(4):770-80. PubMed ID: 20024616
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Copper accumulation and toxicity in fluvial periphyton: the influence of exposure history.
    Serra A; Corcoll N; Guasch H
    Chemosphere; 2009 Feb; 74(5):633-41. PubMed ID: 19081601
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interactive effects of phosphorus and copper on Hyalella azteca via periphyton in aquatic ecosystems.
    Li M; Costello DM; Burton GA
    Ecotoxicol Environ Saf; 2012 Sep; 83():41-6. PubMed ID: 22738933
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of periphyton in mediating the effects of pollution in a stream ecosystem.
    Hill WR; Ryon MG; Smith JG; Adams SM; Boston HL; Stewart AJ
    Environ Manage; 2010 Mar; 45(3):563-76. PubMed ID: 20108138
    [TBL] [Abstract][Full Text] [Related]  

  • 5. New evidences of Roundup (glyphosate formulation) impact on the periphyton community and the water quality of freshwater ecosystems.
    Vera MS; Lagomarsino L; Sylvester M; Pérez GL; Rodríguez P; Mugni H; Sinistro R; Ferraro M; Bonetto C; Zagarese H; Pizarro H
    Ecotoxicology; 2010 Apr; 19(4):710-21. PubMed ID: 20091117
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of chronic copper exposure on fluvial systems: linking structural and physiological changes of fluvial biofilms with the in-stream copper retention.
    Serra A; Guasch H
    Sci Total Environ; 2009 Sep; 407(19):5274-82. PubMed ID: 19646733
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of zinc on the phosphorus availability to periphyton communities from the river Göta Alv.
    Paulsson M; Månsson V; Blanck H
    Aquat Toxicol; 2002 Jan; 56(2):103-13. PubMed ID: 11755699
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Periphyton responses to nutrient and atrazine mixtures introduced through agricultural runoff.
    Murdock JN; Shields FD; Lizotte RE
    Ecotoxicology; 2013 Mar; 22(2):215-30. PubMed ID: 23179409
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Temperature modulates phototrophic periphyton response to chronic copper exposure.
    Lambert AS; Dabrin A; Morin S; Gahou J; Foulquier A; Coquery M; Pesce S
    Environ Pollut; 2016 Jan; 208(Pt B):821-9. PubMed ID: 26608872
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Land use change and nitrogen enrichment of a Rocky Mountain watershed.
    Kaushal SS; Lewis WM; McCutchan JH
    Ecol Appl; 2006 Feb; 16(1):299-312. PubMed ID: 16705981
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural and functional responses of periphyton and macroinvertebrate communities to ferric Fe, Cu, and Zn in stream mesocosms.
    Cadmus P; Guasch H; Herdrich AT; Bonet B; Urrea G; Clements WH
    Environ Toxicol Chem; 2018 May; 37(5):1320-1329. PubMed ID: 29278661
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of copper exposure on a simple aquatic food chain.
    Real M; Muñoz I; Guasch H; Navarro E; Sabater S
    Aquat Toxicol; 2003 May; 63(3):283-91. PubMed ID: 12711417
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In situ assessment of periphyton recovery in a river contaminated by pesticides.
    Dorigo U; Berard A; Rimet F; Bouchez A; Montuelle B
    Aquat Toxicol; 2010 Jul; 98(4):396-406. PubMed ID: 20398950
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Response of periphyton biomass to high phosphorus concentrations in laboratory experiments.
    Giorgi AD
    Bull Environ Contam Toxicol; 1995 Dec; 55(6):825-32. PubMed ID: 8601060
    [No Abstract]   [Full Text] [Related]  

  • 15. Metal toxicity and recovery response of riverine periphytic algae.
    Pandey LK; Bergey EA
    Sci Total Environ; 2018 Nov; 642():1020-1031. PubMed ID: 30045485
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ecological stoichiometry of indirect grazer effects on periphyton nutrient content.
    Hillebrand H; Frost P; Liess A
    Oecologia; 2008 Mar; 155(3):619-30. PubMed ID: 18064492
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of periphyton community structure on heavy metal accumulation in mystery snail (Cipangopaludina chinensis): a case study of the Bai River, China.
    Cui J; Shan B; Tang W
    J Environ Sci (China); 2012; 24(10):1723-30. PubMed ID: 23520840
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An assessment of the risk to surface water ecosystems of groundwater P in the UK and Ireland.
    Holman IP; Howden NJ; Bellamy P; Willby N; Whelan MJ; Rivas-Casado M
    Sci Total Environ; 2010 Mar; 408(8):1847-57. PubMed ID: 19945150
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Taxonomic Shift Over a Phosphorus Gradient Affects the Stoichiometry and Fatty Acid Composition of Stream Periphyton.
    Iannino A; Vosshage ATL; Weitere M; Fink P
    J Phycol; 2020 Dec; 56(6):1687-1695. PubMed ID: 32738149
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Environmental impacts on periphyton assemblage in Shanghai's main urban rivers, China].
    Liang X; Li XP; Gu YJ
    Huan Jing Ke Xue; 2007 Aug; 28(8):1662-9. PubMed ID: 17926390
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.