BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 20025224)

  • 1. In vitro bioavailability of iron from the heme analogue sodium iron chlorophyllin.
    Miret S; Tascioglu S; van der Burg M; Frenken L; Klaffke W
    J Agric Food Chem; 2010 Jan; 58(2):1327-32. PubMed ID: 20025224
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Metabolism and Potential Bioactivity of Chlorophyll and Metallo-chlorophyll Derivatives in the Gastrointestinal Tract.
    Zhong S; Bird A; Kopec RE
    Mol Nutr Food Res; 2021 Apr; 65(7):e2000761. PubMed ID: 33548074
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Estimation of the iron bioavailability in green vegetables using an in vitro digestion/Caco-2 cell model.
    Rodriguez-Ramiro I; Dell'Aquila C; Ward JL; Neal AL; Bruggraber SFA; Shewry PR; Fairweather-Tait S
    Food Chem; 2019 Dec; 301():125292. PubMed ID: 31394334
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sodium copper chlorophyllin: in vitro digestive stability and accumulation by Caco-2 human intestinal cells.
    Ferruzzi MG; Failla ML; Schwartz SJ
    J Agric Food Chem; 2002 Mar; 50(7):2173-9. PubMed ID: 11902975
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Iron bioavailability of hemoglobin from soy root nodules using a Caco-2 cell culture model.
    Proulx AK; Reddy MB
    J Agric Food Chem; 2006 Feb; 54(4):1518-22. PubMed ID: 16478282
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparing soluble ferric pyrophosphate to common iron salts and chelates as sources of bioavailable iron in a Caco-2 cell culture model.
    Zhu L; Glahn RP; Nelson D; Miller DD
    J Agric Food Chem; 2009 Jun; 57(11):5014-9. PubMed ID: 19449807
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The precision of in vitro methods and algorithms for predicting the bioavailability of dietary iron.
    Lynch S
    Int J Vitam Nutr Res; 2005 Nov; 75(6):436-45. PubMed ID: 16711477
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gastric digestion of pea ferritin and modulation of its iron bioavailability by ascorbic and phytic acids in caco-2 cells.
    Bejjani S; Pullakhandam R; Punjal R; Nair KM
    World J Gastroenterol; 2007 Apr; 13(14):2083-8. PubMed ID: 17465452
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sodium pyrophosphate enhances iron bioavailability from bouillon cubes fortified with ferric pyrophosphate.
    Cercamondi CI; Duchateau GS; Harika RK; van den Berg R; Murray P; Koppenol WP; Zeder C; Zimmermann MB; Moretti D
    Br J Nutr; 2016 Aug; 116(3):496-503. PubMed ID: 27267429
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dietary Factors Modulate Iron Uptake in Caco-2 Cells from an Iron Ingot Used as a Home Fortificant to Prevent Iron Deficiency.
    Rodriguez-Ramiro I; Perfecto A; Fairweather-Tait SJ
    Nutrients; 2017 Sep; 9(9):. PubMed ID: 28895913
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Effects of ascorbic acid and citric acid on iron bioavailability in an in vitro digestion/ Caco-2 cell culture model].
    Lei J; Zhang MQ; Huang CY; Bai L; He ZH
    Nan Fang Yi Ke Da Xue Xue Bao; 2008 Oct; 28(10):1743-7. PubMed ID: 18971162
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro estimates of iron bioavailability in some Kenyan complementary foods.
    Lung'aho MG; Glahn RP
    Food Nutr Bull; 2009 Jun; 30(2):145-52. PubMed ID: 19689093
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bioavailability of iron from plant and animal ferritins.
    Lv C; Zhao G; Lönnerdal B
    J Nutr Biochem; 2015 May; 26(5):532-40. PubMed ID: 25727353
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Applicability of an in vitro digestion model in assessing the bioaccessibility of mycotoxins from food.
    Versantvoort CH; Oomen AG; Van de Kamp E; Rompelberg CJ; Sips AJ
    Food Chem Toxicol; 2005 Jan; 43(1):31-40. PubMed ID: 15582193
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Caco-2 cell iron uptake from meat and casein digests parallels in vivo studies: use of a novel in vitro method for rapid estimation of iron bioavailability.
    Glahn RP; Wien EM; Van Campen DR; Miller DD
    J Nutr; 1996 Jan; 126(1):332-9. PubMed ID: 8558319
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Caco-2 cells can be used to assess human iron bioavailability from a semipurified meal.
    Au AP; Reddy MB
    J Nutr; 2000 May; 130(5):1329-34. PubMed ID: 10801938
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanisms of Iron Uptake from Ferric Phosphate Nanoparticles in Human Intestinal Caco-2 Cells.
    Perfecto A; Elgy C; Valsami-Jones E; Sharp P; Hilty F; Fairweather-Tait S
    Nutrients; 2017 Apr; 9(4):. PubMed ID: 28375175
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The cotyledon cell wall and intracellular matrix are factors that limit iron bioavailability of the common bean (Phaseolus vulgaris).
    Glahn RP; Tako E; Cichy K; Wiesinger J
    Food Funct; 2016 Jul; 7(7):3193-200. PubMed ID: 27326892
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The use of caco-2 cells to estimate fe absorption in humans--a critical appraisal.
    Sandberg AS
    Int J Vitam Nutr Res; 2010 Oct; 80(4-5):307-13. PubMed ID: 21462114
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Methods and options for estimating iron and zinc bioavailability using Caco-2 cell models: benefits and limitations.
    Sharp P
    Int J Vitam Nutr Res; 2005 Nov; 75(6):413-21. PubMed ID: 16711475
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.