BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 20025261)

  • 1. Impact of drying on wood ultrastructure observed by deuterium exchange and photoacoustic FT-IR spectroscopy.
    Suchy M; Virtanen J; Kontturi E; Vuorinen T
    Biomacromolecules; 2010 Feb; 11(2):515-20. PubMed ID: 20025261
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of drying on wood ultrastructure: similarities in cell wall alteration between native wood and isolated wood-based fibers.
    Suchy M; Kontturi E; Vuorinen T
    Biomacromolecules; 2010 Aug; 11(8):2161-8. PubMed ID: 20614934
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Estimation of wood density and chemical composition by means of diffuse reflectance mid-infrared Fourier transform (DRIFT-MIR) spectroscopy.
    Nuopponen MH; Birch GM; Sykes RJ; Lee SJ; Stewart D
    J Agric Food Chem; 2006 Jan; 54(1):34-40. PubMed ID: 16390174
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Changes in accessibility of cellulose during kraft pulping of wood in deuterium oxide.
    Pönni R; Galvis L; Vuorinen T
    Carbohydr Polym; 2014 Jan; 101():792-7. PubMed ID: 24299840
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distribution of lignin and its coniferyl alcohol and coniferyl aldehyde groups in Picea abies and Pinus sylvestris as observed by Raman imaging.
    Hänninen T; Kontturi E; Vuorinen T
    Phytochemistry; 2011 Oct; 72(14-15):1889-95. PubMed ID: 21632083
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spectral characterization of eucalyptus wood.
    Popescu CM; Popescu MC; Singurel G; Vasile C; Argyropoulos DS; Willfor S
    Appl Spectrosc; 2007 Nov; 61(11):1168-77. PubMed ID: 18028695
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemical imaging of wood-polypropylene composites.
    Harper DP; Wolcott MP
    Appl Spectrosc; 2006 Aug; 60(8):898-905. PubMed ID: 16925926
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Near-infrared spectroscopic observation of the ageing process in archaeological wood using a deuterium exchange method.
    Tsuchikawa S; Yonenobu H; Siesler HW
    Analyst; 2005 Mar; 130(3):379-84. PubMed ID: 15724168
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct fluorination applied to wood flour used as a reinforcement for polymers.
    Saulnier F; Dubois M; Charlet K; Frezet L; Beakou A
    Carbohydr Polym; 2013 Apr; 94(1):642-6. PubMed ID: 23544585
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carbon-thirteen cross-polarization magic angle spinning nuclear magnetic resonance and Fourier transform infrared studies of thermally modified wood exposed to brown and soft rot fungi.
    Sivonen H; Nuopponen M; Maunu SL; Sundholm F; Vuorinen T
    Appl Spectrosc; 2003 Mar; 57(3):266-73. PubMed ID: 14658617
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Difference of the crystal structure of cellulose in wood after hydrothermal and aging degradation: a NIR spectroscopy and XRD study.
    Inagaki T; Siesler HW; Mitsui K; Tsuchikawa S
    Biomacromolecules; 2010 Sep; 11(9):2300-5. PubMed ID: 20831273
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of steam treatment on the properties of wood cell walls.
    Yin Y; Berglund L; Salmén L
    Biomacromolecules; 2011 Jan; 12(1):194-202. PubMed ID: 21133402
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polarized infrared microspectroscopy of single spruce fibers: hydrogen bonding in wood polymers.
    Schmidt M; Gierlinger N; Schade U; Rogge T; Grunze M
    Biopolymers; 2006 Dec; 83(5):546-55. PubMed ID: 16897765
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accessibility of cellulose: Structural changes and their reversibility in aqueous media.
    Pönni R; Kontturi E; Vuorinen T
    Carbohydr Polym; 2013 Apr; 93(2):424-9. PubMed ID: 23499078
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterisation of the initial degradation stage of Scots pine (Pinus sylvestris L.) sapwood after attack by brown-rot fungus Coniophora puteana.
    Irbe I; Andersone I; Andersons B; Noldt G; Dizhbite T; Kurnosova N; Nuopponen M; Stewart D
    Biodegradation; 2011 Jul; 22(4):719-28. PubMed ID: 21327804
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fourier transform infared spectroscopy investigation of protein conformation in spray-dried protein/trehalose powders.
    French DL; Arakawa T; Li T
    Biopolymers; 2004 Mar; 73(4):524-31. PubMed ID: 14991670
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In situ FT-IR microscopic study on enzymatic treatment of poplar wood cross-sections.
    Gierlinger N; Goswami L; Schmidt M; Burgert I; Coutand C; Rogge T; Schwanninger M
    Biomacromolecules; 2008 Aug; 9(8):2194-201. PubMed ID: 18636773
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determination of the structure of wood from the self-diffusion probability densities of a fluid observed by position-exchange NMR spectroscopy.
    Telkki VV; Jokisaari J
    Phys Chem Chem Phys; 2009 Feb; 11(8):1167-72. PubMed ID: 19209359
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new method to quantitatively evaluate the chemical composition of waterlogged wood by means of attenuated total reflectance Fourier transform infrared (ATR FT-IR) measurements carried out on wet material.
    Pizzo B; Pecoraro E; Macchioni N
    Appl Spectrosc; 2013 May; 67(5):553-62. PubMed ID: 23643045
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrastructure and mechanical properties of populus wood with reduced lignin content caused by transgenic down-regulation of cinnamate 4-hydroxylase.
    Bjurhager I; Olsson AM; Zhang B; Gerber L; Kumar M; Berglund LA; Burgert I; Sundberg B; Salmén L
    Biomacromolecules; 2010 Sep; 11(9):2359-65. PubMed ID: 20831275
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.