These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 20025281)

  • 1. Using NMR solvent water relaxation to investigate metalloenzyme-ligand binding interactions.
    Leung IK; Flashman E; Yeoh KK; Schofield CJ; Claridge TD
    J Med Chem; 2010 Jan; 53(2):867-75. PubMed ID: 20025281
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Water-based ligand screening for paramagnetic metalloproteins.
    Bertini I; Fragai M; Luchinat C; Talluri E
    Angew Chem Int Ed Engl; 2008; 47(24):4533-7. PubMed ID: 18465767
    [No Abstract]   [Full Text] [Related]  

  • 3. Different modes of inhibitor binding to prolyl hydroxylase by combined use of X-ray crystallography and NMR spectroscopy of paramagnetic complexes.
    Poppe L; Tegley CM; Li V; Lewis J; Zondlo J; Yang E; Kurzeja RJ; Syed R
    J Am Chem Soc; 2009 Nov; 131(46):16654-5. PubMed ID: 19886658
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interaction of (4-hydroxyphenyl)pyruvate dioxygenase with the specific inhibitor 2-[2-nitro-4-(trifluoromethyl)benzoyl]-1,3-cyclohexanedione.
    Kavana M; Moran GR
    Biochemistry; 2003 Sep; 42(34):10238-45. PubMed ID: 12939152
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Use of phosphorus ligand NMR probes to investigate electronic and second-sphere solvent effects in ligand substitution reactions at manganese(II) and manganese(III).
    Summers JS; Base K; Boukhalfa H; Payne JE; Shaw BR; Crumbliss AL
    Inorg Chem; 2005 May; 44(10):3405-11. PubMed ID: 15877420
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of solvent accessibility epitopes for different dehydrogenase inhibitors.
    Ludwig C; Michiels PJ; Lodi A; Ride J; Bunce C; Günther UL
    ChemMedChem; 2008 Sep; 3(9):1371-6. PubMed ID: 18576452
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protein/solvent medium effects on Mg(2+)-carboxylate interactions in metalloenzymes.
    Babu CS; Lim C
    J Am Chem Soc; 2010 May; 132(18):6290-1. PubMed ID: 20397692
    [TBL] [Abstract][Full Text] [Related]  

  • 8. NMR structures of paramagnetic metalloproteins.
    Arnesano F; Banci L; Piccioli M
    Q Rev Biophys; 2005 May; 38(2):167-219. PubMed ID: 16674835
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Virtual screening against metalloenzymes for inhibitors and substrates.
    Irwin JJ; Raushel FM; Shoichet BK
    Biochemistry; 2005 Sep; 44(37):12316-28. PubMed ID: 16156645
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of chelate dynamics on water exchange reactions of paramagnetic aminopolycarboxylate complexes.
    Maigut J; Meier R; Zahl A; van Eldik R
    Inorg Chem; 2008 Jul; 47(13):5702-19. PubMed ID: 18510310
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigating metal-binding in proteins by nuclear magnetic resonance.
    Jensen MR; Hass MA; Hansen DF; Led JJ
    Cell Mol Life Sci; 2007 May; 64(9):1085-104. PubMed ID: 17396226
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dissecting the general physicochemical properties of noncovalent interactions involving tyrosine side chain as a second-shell ligand in biomolecular metal-binding site mimetics: an experimental study combining fluorescence, 13C NMR spectroscopy and ESI mass spectrometry.
    Yang CM; Li X; Wei W; Li Y; Duan Z; Zheng J; Huang T
    Chemistry; 2007; 13(11):3120-30. PubMed ID: 17201001
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Measured rates of fluoride/metal association correlate with rates of superoxide/metal reactions for Fe(III)EDTA(H2O)- and related complexes.
    Summers JS; Baker JB; Meyerstein D; Mizrahi A; Zilbermann I; Cohen H; Wilson CM; Jones JR
    J Am Chem Soc; 2008 Feb; 130(5):1727-34. PubMed ID: 18186636
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Water exchange at the active site of carbonic anhydrase. A synthesis of the OH- and H2O-models.
    Koenig SH; Brown RD; Bertini I; Luchinat C
    Biophys J; 1983 Feb; 41(2):179-87. PubMed ID: 6404321
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Physics-based scoring of protein-ligand complexes: enrichment of known inhibitors in large-scale virtual screening.
    Huang N; Kalyanaraman C; Irwin JJ; Jacobson MP
    J Chem Inf Model; 2006; 46(1):243-53. PubMed ID: 16426060
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of competitive binding of ligands to human serum albumin using NMR relaxation measurements.
    Cui YF; Bai GY; Li CG; Ye CH; Liu ML
    J Pharm Biomed Anal; 2004 Feb; 34(2):247-54. PubMed ID: 15013138
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Femtomolar Zn(II) affinity in a peptide-based ligand designed to model thiolate-rich metalloprotein active sites.
    Petros AK; Reddi AR; Kennedy ML; Hyslop AG; Gibney BR
    Inorg Chem; 2006 Dec; 45(25):9941-58. PubMed ID: 17140191
    [TBL] [Abstract][Full Text] [Related]  

  • 18. First-second shell interactions in metal binding sites in proteins: a PDB survey and DFT/CDM calculations.
    Dudev T; Lin YL; Dudev M; Lim C
    J Am Chem Soc; 2003 Mar; 125(10):3168-80. PubMed ID: 12617685
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exploring the active site of human factor Xa protein by NMR screening of small molecule probes.
    Fielding L; Fletcher D; Rutherford S; Kaur J; Mestres J
    Org Biomol Chem; 2003 Dec; 1(23):4235-41. PubMed ID: 14685325
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A quantum mechanics-based scoring function: study of zinc ion-mediated ligand binding.
    Raha K; Merz KM
    J Am Chem Soc; 2004 Feb; 126(4):1020-1. PubMed ID: 14746460
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.