These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Interstrand loops CD and EF act as pH-dependent gates to regulate fatty acid ligand binding in tear lipocalin. Gasymov OK; Abduragimov AR; Yusifov TN; Glasgow BJ Biochemistry; 2004 Oct; 43(40):12894-904. PubMed ID: 15461462 [TBL] [Abstract][Full Text] [Related]
3. Resolution of ligand positions by site-directed tryptophan fluorescence in tear lipocalin. Gasymov OK; Abduragimov AR; Yusifov TN; Glasgow BJ Protein Sci; 2000 Feb; 9(2):325-31. PubMed ID: 10716184 [TBL] [Abstract][Full Text] [Related]
4. Intracavitary ligand distribution in tear lipocalin by site-directed tryptophan fluorescence. Gasymov OK; Abduragimov AR; Glasgow BJ Biochemistry; 2009 Aug; 48(30):7219-28. PubMed ID: 19586017 [TBL] [Abstract][Full Text] [Related]
5. Excited protein states of human tear lipocalin for low- and high-affinity ligand binding revealed by functional AB loop motion. Gasymov OK; Abduragimov AR; Glasgow BJ Biophys Chem; 2010 Jun; 149(1-2):47-57. PubMed ID: 20439130 [TBL] [Abstract][Full Text] [Related]
6. Binding studies of tear lipocalin: the role of the conserved tryptophan in maintaining structure, stability and ligand affinity. Gasymov OK; Abduragimov AR; Yusifov TN; Glasgow BJ Biochim Biophys Acta; 1999 Aug; 1433(1-2):307-20. PubMed ID: 10515687 [TBL] [Abstract][Full Text] [Related]
7. Site-directed tryptophan fluorescence reveals the solution structure of tear lipocalin: evidence for features that confer promiscuity in ligand binding. Gasymov OK; Abduragimov AR; Yusifov TN; Glasgow BJ Biochemistry; 2001 Dec; 40(49):14754-62. PubMed ID: 11732894 [TBL] [Abstract][Full Text] [Related]
9. The conserved disulfide bond of human tear lipocalin modulates conformation and lipid binding in a ligand selective manner. Gasymov OK; Abduragimov AR; Glasgow BJ Biochim Biophys Acta; 2011 May; 1814(5):671-83. PubMed ID: 21466861 [TBL] [Abstract][Full Text] [Related]
10. Double tryptophan exciton probe to gauge proximal side chains in proteins: augmentation at low temperature. Gasymov OK; Abduragimov AR; Glasgow BJ J Phys Chem B; 2015 Mar; 119(10):3962-8. PubMed ID: 25693116 [TBL] [Abstract][Full Text] [Related]
11. Steady-state kinetics and tryptophan fluorescence properties of halohydrin dehalogenase from Agrobacterium radiobacter. Roles of W139 and W249 in the active site and halide-induced conformational change. Tang L; van Merode AE; Lutje Spelberg JH; Fraaije MW; Janssen DB Biochemistry; 2003 Dec; 42(47):14057-65. PubMed ID: 14636074 [TBL] [Abstract][Full Text] [Related]
12. Site-directed circular dichroism of proteins: 1Lb bands of Trp resolve position-specific features in tear lipocalin. Gasymov OK; Abduragimov AR; Glasgow BJ Anal Biochem; 2008 Mar; 374(2):386-95. PubMed ID: 18047823 [TBL] [Abstract][Full Text] [Related]
13. Solution structure by site directed tryptophan fluorescence in tear lipocalin. Gasymov OK; Abduragimov AR; Yusifov TN; Glasgow BJ Biochem Biophys Res Commun; 1997 Oct; 239(1):191-6. PubMed ID: 9345294 [TBL] [Abstract][Full Text] [Related]
14. Tryptophan fluorescence reveals the conformational state of a dynamic loop in recombinant porcine fructose-1,6-bisphosphatase. Nelson SW; Iancu CV; Choe JY; Honzatko RB; Fromm HJ Biochemistry; 2000 Sep; 39(36):11100-6. PubMed ID: 10998248 [TBL] [Abstract][Full Text] [Related]
15. Tryptophan fluorescence of the lux-specific Vibrio harveyi acyl-ACP thioesterase and its tryptophan mutants: structural properties and ligand-induced conformational change. Li J; Szittner R; Meighen EA Biochemistry; 1998 Nov; 37(46):16130-8. PubMed ID: 9819205 [TBL] [Abstract][Full Text] [Related]
16. Effect of short- and long-range interactions on trp rotamer populations determined by site-directed tryptophan fluorescence of tear lipocalin. Gasymov OK; Abduragimov AR; Glasgow BJ PLoS One; 2013; 8(10):e78754. PubMed ID: 24205305 [TBL] [Abstract][Full Text] [Related]
17. Side chain mobility and ligand interactions of the G strand of tear lipocalins by site-directed spin labeling. Glasgow BJ; Gasymov OK; Abduragimov AR; Yusifov TN; Altenbach C; Hubbell WL Biochemistry; 1999 Oct; 38(41):13707-16. PubMed ID: 10521278 [TBL] [Abstract][Full Text] [Related]
18. Ligand-induced conformational changes in lactose repressor: a fluorescence study of single tryptophan mutants. Barry JK; Matthews KS Biochemistry; 1997 Dec; 36(50):15632-42. PubMed ID: 9398291 [TBL] [Abstract][Full Text] [Related]
19. Steady-state and time-resolved fluorescence studies on wild type and mutant chromatium vinosum high potential iron proteins: holo- and apo-forms. Sau AK; Chen CA; Cowan JA; Mazumdar S; Mitra S Biophys J; 2001 Oct; 81(4):2320-30. PubMed ID: 11566801 [TBL] [Abstract][Full Text] [Related]
20. Relaxation of beta-structure in tear lipocalin and enhancement of retinoid binding. Gasymov OK; Abduragimov AR; Yusifov TN; Glasgow BJ Invest Ophthalmol Vis Sci; 2002 Oct; 43(10):3165-73. PubMed ID: 12356820 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]