BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 20025311)

  • 1. Analytical formulas for low-fluence non-line-narrowed hole-burned spectra in an excitonically coupled dimer.
    Reppert M; Naibo V; Jankowiak R
    J Chem Phys; 2009 Dec; 131(23):234104. PubMed ID: 20025311
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Low-energy chlorophyll states in the CP43 antenna protein complex: simulation of various optical spectra. II.
    Reppert M; Zazubovich V; Dang NC; Seibert M; Jankowiak R
    J Phys Chem B; 2008 Aug; 112(32):9934-47. PubMed ID: 18642950
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lowest electronic states of the CP47 antenna protein complex of photosystem II: simulation of optical spectra and revised structural assignments.
    Reppert M; Acharya K; Neupane B; Jankowiak R
    J Phys Chem B; 2010 Sep; 114(36):11884-98. PubMed ID: 20722360
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Insight into the electronic structure of the CP47 antenna protein complex of photosystem II: hole burning and fluorescence study.
    Neupane B; Dang NC; Acharya K; Reppert M; Zazubovich V; Picorel R; Seibert M; Jankowiak R
    J Am Chem Soc; 2010 Mar; 132(12):4214-29. PubMed ID: 20218564
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The CP43 proximal antenna complex of higher plant photosystem II revisited: modeling and hole burning study. I.
    Dang NC; Zazubovich V; Reppert M; Neupane B; Picorel R; Seibert M; Jankowiak R
    J Phys Chem B; 2008 Aug; 112(32):9921-33. PubMed ID: 18642949
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Excitonic energy level structure and pigment-protein interactions in the recombinant water-soluble chlorophyll protein. II. Spectral hole-burning experiments.
    Pieper J; Rätsep M; Trostmann I; Schmitt FJ; Theiss C; Paulsen H; Eichler HJ; Freiberg A; Renger G
    J Phys Chem B; 2011 Apr; 115(14):4053-65. PubMed ID: 21417356
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Toward an Understanding of the Excitonic Structure of the CP47 Antenna Protein Complex of Photosystem II Revealed via Circularly Polarized Luminescence.
    Jassas M; Reinot T; Kell A; Jankowiak R
    J Phys Chem B; 2017 May; 121(17):4364-4378. PubMed ID: 28394609
    [TBL] [Abstract][Full Text] [Related]  

  • 8. How Well Does the Hole-Burning Action Spectrum Represent the Site-Distribution Function of the Lowest-Energy State in Photosynthetic Pigment-Protein Complexes?
    Zazubovich V; Jankowiak R
    J Phys Chem B; 2019 Jul; 123(28):6007-6013. PubMed ID: 31265294
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the Conflicting Estimations of Pigment Site Energies in Photosynthetic Complexes: A Case Study of the CP47 Complex.
    Reinot T; Chen J; Kell A; Jassas M; Robben KC; Zazubovich V; Jankowiak R
    Anal Chem Insights; 2016; 11():35-48. PubMed ID: 27279733
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling of fluorescence line-narrowed spectra in weakly coupled dimers in the presence of excitation energy transfer.
    Lin C; Reppert M; Feng X; Jankowiak R
    J Chem Phys; 2014 Jul; 141(3):035101. PubMed ID: 25053340
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electronic energy transfer through non-adiabatic vibrational-electronic resonance. II. 1D spectra for a dimer.
    Tiwari V; Jonas DM
    J Chem Phys; 2018 Feb; 148(8):084308. PubMed ID: 29495789
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Red antenna states of photosystem I from cyanobacteria Synechocystis PCC 6803 and Thermosynechococcus elongatus: single-complex spectroscopy and spectral hole-burning study.
    Riley KJ; Reinot T; Jankowiak R; Fromme P; Zazubovich V
    J Phys Chem B; 2007 Jan; 111(1):286-92. PubMed ID: 17201451
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Explaining the visible and near-infrared circular dichroism spectra of light-harvesting 1 complexes from purple bacteria: a modeling study.
    Georgakopoulou S; van Grondelle R; van der Zwan G
    J Phys Chem B; 2006 Feb; 110(7):3344-53. PubMed ID: 16494349
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two-dimensional electronic spectra of symmetric dimers: Intermolecular coupling and conformational states.
    Szöcs V; Pálszegi T; Lukes V; Sperling J; Milota F; Jakubetz W; Kauffmann HF
    J Chem Phys; 2006 Mar; 124(12):124511. PubMed ID: 16599701
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chromophore-chromophore and chromophore-protein interactions in monomeric light-harvesting complex II of green plants studied by spectral hole burning and fluorescence line narrowing.
    Pieper J; Rätsep M; Irrgang KD; Freiberg A
    J Phys Chem B; 2009 Aug; 113(31):10870-80. PubMed ID: 19719274
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photophysical behavior and assignment of the low-energy chlorophyll states in the CP43 proximal antenna protein of higher plant photosystem II.
    Hughes JL; Picorel R; Seibert M; Krausz E
    Biochemistry; 2006 Oct; 45(40):12345-57. PubMed ID: 17014087
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxygen-evolving Photosystem II core complexes: a new paradigm based on the spectral identification of the charge-separating state, the primary acceptor and assignment of low-temperature fluorescence.
    Krausz E; Hughes JL; Smith P; Pace R; Peterson Arsköld S
    Photochem Photobiol Sci; 2005 Sep; 4(9):744-53. PubMed ID: 16121287
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accurate modeling of fluorescence line narrowing difference spectra: Direct measurement of the single-site fluorescence spectrum.
    Reppert M; Naibo V; Jankowiak R
    J Chem Phys; 2010 Jul; 133(1):014506. PubMed ID: 20614975
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Understanding the changes in the circular dichroism of light harvesting complex II upon varying its pigment composition and organization.
    Georgakopoulou S; van der Zwan G; Bassi R; van Grondelle R; van Amerongen H; Croce R
    Biochemistry; 2007 Apr; 46(16):4745-54. PubMed ID: 17402710
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of ionizable residues on the absorption spectrum and initial electron-transfer kinetics in the photosynthetic reaction center of Rhodobacter sphaeroides.
    Johnson ET; Nagarajan V; Zazubovich V; Riley K; Small GJ; Parson WW
    Biochemistry; 2003 Nov; 42(46):13673-83. PubMed ID: 14622014
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.