These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
218 related articles for article (PubMed ID: 20025530)
1. CCR5 deficiency is a risk factor for early clinical manifestations of West Nile virus infection but not for viral transmission. Lim JK; McDermott DH; Lisco A; Foster GA; Krysztof D; Follmann D; Stramer SL; Murphy PM J Infect Dis; 2010 Jan; 201(2):178-85. PubMed ID: 20025530 [TBL] [Abstract][Full Text] [Related]
2. CCR5 deficiency increases risk of symptomatic West Nile virus infection. Glass WG; McDermott DH; Lim JK; Lekhong S; Yu SF; Frank WA; Pape J; Cheshier RC; Murphy PM J Exp Med; 2006 Jan; 203(1):35-40. PubMed ID: 16418398 [TBL] [Abstract][Full Text] [Related]
3. Genetic deficiency of chemokine receptor CCR5 is a strong risk factor for symptomatic West Nile virus infection: a meta-analysis of 4 cohorts in the US epidemic. Lim JK; Louie CY; Glaser C; Jean C; Johnson B; Johnson H; McDermott DH; Murphy PM J Infect Dis; 2008 Jan; 197(2):262-5. PubMed ID: 18179388 [TBL] [Abstract][Full Text] [Related]
4. CCR5 limits cortical viral loads during West Nile virus infection of the central nervous system. Durrant DM; Daniels BP; Pasieka T; Dorsey D; Klein RS J Neuroinflammation; 2015 Dec; 12():233. PubMed ID: 26667390 [TBL] [Abstract][Full Text] [Related]
5. A genetic basis for human susceptibility to West Nile virus. Diamond MS; Klein RS Trends Microbiol; 2006 Jul; 14(7):287-9. PubMed ID: 16750369 [TBL] [Abstract][Full Text] [Related]
6. Chemokine receptor CCR5 promotes leukocyte trafficking to the brain and survival in West Nile virus infection. Glass WG; Lim JK; Cholera R; Pletnev AG; Gao JL; Murphy PM J Exp Med; 2005 Oct; 202(8):1087-98. PubMed ID: 16230476 [TBL] [Abstract][Full Text] [Related]
7. Differences in Early Cytokine Production Are Associated With Development of a Greater Number of Symptoms Following West Nile Virus Infection. Hoffman KW; Sachs D; Bardina SV; Michlmayr D; Rodriguez CA; Sum J; Foster GA; Krysztof D; Stramer SL; Lim JK J Infect Dis; 2016 Aug; 214(4):634-43. PubMed ID: 27142077 [TBL] [Abstract][Full Text] [Related]
8. CCR5: no longer a "good for nothing" gene--chemokine control of West Nile virus infection. Lim JK; Glass WG; McDermott DH; Murphy PM Trends Immunol; 2006 Jul; 27(7):308-12. PubMed ID: 16753343 [TBL] [Abstract][Full Text] [Related]
9. Associations between West Nile virus infection and symptoms reported by blood donors identified through nucleic acid test screening. Custer B; Kamel H; Kiely NE; Murphy EL; Busch MP Transfusion; 2009 Feb; 49(2):278-88. PubMed ID: 19389211 [TBL] [Abstract][Full Text] [Related]
10. West Nile or Usutu Virus? A Three-Year Follow-Up of Humoral and Cellular Response in a Group of Asymptomatic Blood Donors. Percivalle E; Cassaniti I; Sarasini A; Rovida F; Adzasehoun KMG; Colombini I; Isernia P; Cuppari I; Baldanti F Viruses; 2020 Jan; 12(2):. PubMed ID: 32013152 [TBL] [Abstract][Full Text] [Related]
11. West Nile fever characteristics among viremic persons identified through blood donor screening. Zou S; Foster GA; Dodd RY; Petersen LR; Stramer SL J Infect Dis; 2010 Nov; 202(9):1354-61. PubMed ID: 20874087 [TBL] [Abstract][Full Text] [Related]
12. Probable transfusion transmission of West Nile virus from an apheresis platelet that screened non-reactive by individual donor-nucleic acid testing. Hayes C; Stephens L; Fridey JL; Snyder RE; Groves JA; Stramer SL; Klapper E Transfusion; 2020 Feb; 60(2):424-429. PubMed ID: 31633814 [TBL] [Abstract][Full Text] [Related]
13. Beyond HIV infection: Neglected and varied impacts of CCR5 and CCR5Δ32 on viral diseases. Ellwanger JH; Kulmann-Leal B; Kaminski VL; Rodrigues AG; Bragatte MAS; Chies JAB Virus Res; 2020 Sep; 286():198040. PubMed ID: 32479976 [TBL] [Abstract][Full Text] [Related]
14. Role of CCR5Δ32 mutation in protecting patients with Schistosoma mansoni infection against hepatitis C viral infection or progression. El-Moamly AA; El-Sweify MA; Rashad RM; Abdalla EM; Ragheb MM; Awad MM Parasitol Res; 2013 Jul; 112(7):2745-52. PubMed ID: 23515570 [TBL] [Abstract][Full Text] [Related]
16. Interferon regulatory factor 5-dependent immune responses in the draining lymph node protect against West Nile virus infection. Thackray LB; Shrestha B; Richner JM; Miner JJ; Pinto AK; Lazear HM; Gale M; Diamond MS J Virol; 2014 Oct; 88(19):11007-21. PubMed ID: 25031348 [TBL] [Abstract][Full Text] [Related]
17. West Nile viremic blood donors and risk factors for subsequent West Nile fever. Brown JA; Factor DL; Tkachenko N; Templeton SM; Crall ND; Pape WJ; Bauer MJ; Ambruso DR; Dickey WC; Marfin AA Vector Borne Zoonotic Dis; 2007; 7(4):479-88. PubMed ID: 17979539 [TBL] [Abstract][Full Text] [Related]
18. Update: West Nile virus screening of blood donations and transfusion-associated transmission--United States, 2003. Centers for Disease Control and Prevention (CDC) MMWR Morb Mortal Wkly Rep; 2004 Apr; 53(13):281-4. PubMed ID: 15071426 [TBL] [Abstract][Full Text] [Related]
19. Tregs control the development of symptomatic West Nile virus infection in humans and mice. Lanteri MC; O'Brien KM; Purtha WE; Cameron MJ; Lund JM; Owen RE; Heitman JW; Custer B; Hirschkorn DF; Tobler LH; Kiely N; Prince HE; Ndhlovu LC; Nixon DF; Kamel HT; Kelvin DJ; Busch MP; Rudensky AY; Diamond MS; Norris PJ J Clin Invest; 2009 Nov; 119(11):3266-77. PubMed ID: 19855131 [TBL] [Abstract][Full Text] [Related]
20. Development and persistence of West Nile virus-specific immunoglobulin M (IgM), IgA, and IgG in viremic blood donors. Prince HE; Tobler LH; Lapé-Nixon M; Foster GA; Stramer SL; Busch MP J Clin Microbiol; 2005 Sep; 43(9):4316-20. PubMed ID: 16145071 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]