These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

383 related articles for article (PubMed ID: 20025723)

  • 41. Inference of sparse combinatorial-control networks from gene-expression data: a message passing approach.
    Bailly-Bechet M; Braunstein A; Pagnani A; Weigt M; Zecchina R
    BMC Bioinformatics; 2010 Jun; 11():355. PubMed ID: 20587029
    [TBL] [Abstract][Full Text] [Related]  

  • 42. [Key genes in the pathogenesis of prostate cancer in Chinese men: a bioinformatic study].
    Wang G; Yang K; Meng S; Xu Y; Yang ZH; Liu Y
    Zhonghua Nan Ke Xue; 2010 Apr; 16(4):320-4. PubMed ID: 20626159
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Seeded Bayesian Networks: constructing genetic networks from microarray data.
    Djebbari A; Quackenbush J
    BMC Syst Biol; 2008 Jul; 2():57. PubMed ID: 18601736
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A novel meta-analysis approach of cancer transcriptomes reveals prevailing transcriptional networks in cancer cells.
    Niida A; Imoto S; Nagasaki M; Yamaguchi R; Miyano S
    Genome Inform; 2010 Jan; 22():121-31. PubMed ID: 20238423
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Analysis of differentially expressed genes in LNCaP prostate cancer progression model.
    Xie BX; Zhang H; Wang J; Pang B; Wu RQ; Qian XL; Yu L; Li SH; Shi QG; Huang CF; Zhou JG
    J Androl; 2011; 32(2):170-82. PubMed ID: 20864652
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Computational and experimental approaches for modeling gene regulatory networks.
    Goutsias J; Lee NH
    Curr Pharm Des; 2007; 13(14):1415-36. PubMed ID: 17504165
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Bioinformatics Prediction and Analysis of MicroRNAs and Their Targets as Biomarkers for Prostate Cancer: A Preliminary Study.
    Lombe CP; Meyer M; Pretorius A
    Mol Biotechnol; 2022 Apr; 64(4):401-412. PubMed ID: 34665432
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Inferring and analyzing module-specific lncRNA-mRNA causal regulatory networks in human cancer.
    Zhang J; Le TD; Liu L; Li J
    Brief Bioinform; 2019 Jul; 20(4):1403-1419. PubMed ID: 29401217
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A novel parametric approach to mine gene regulatory relationship from microarray datasets.
    Liu W; Li D; Liu Q; Zhu Y; He F
    BMC Bioinformatics; 2010 Dec; 11 Suppl 11(Suppl 11):S15. PubMed ID: 21172050
    [TBL] [Abstract][Full Text] [Related]  

  • 50. High copy number variations, particular transcription factors, and low immunity contribute to the stemness of prostate cancer cells.
    Dai Z; Liu P
    J Transl Med; 2021 May; 19(1):206. PubMed ID: 33985534
    [TBL] [Abstract][Full Text] [Related]  

  • 51. RegNetB: predicting relevant regulator-gene relationships in localized prostate tumor samples.
    Alvarez A; Woolf PJ
    BMC Bioinformatics; 2011 Jun; 12():243. PubMed ID: 21682879
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Identification of transcriptional factors and key genes in primary osteoporosis by DNA microarray.
    Xie W; Ji L; Zhao T; Gao P
    Med Sci Monit; 2015 May; 21():1333-44. PubMed ID: 25957414
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Gene expression patterns combined with network analysis identify hub genes associated with bladder cancer.
    Bi D; Ning H; Liu S; Que X; Ding K
    Comput Biol Chem; 2015 Jun; 56():71-83. PubMed ID: 25889321
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Biomarker identification and trans-regulatory network analyses in esophageal adenocarcinoma and Barrett's esophagus.
    Lv J; Guo L; Wang JH; Yan YZ; Zhang J; Wang YY; Yu Y; Huang YF; Zhao HP
    World J Gastroenterol; 2019 Jan; 25(2):233-244. PubMed ID: 30670912
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Identifying regulatory targets of cell cycle transcription factors using gene expression and ChIP-chip data.
    Wu WS; Li WH; Chen BS
    BMC Bioinformatics; 2007 Jun; 8():188. PubMed ID: 17559637
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Prediction of a gene regulatory network linked to prostate cancer from gene expression, microRNA and clinical data.
    Bonnet E; Michoel T; Van de Peer Y
    Bioinformatics; 2010 Sep; 26(18):i638-44. PubMed ID: 20823333
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Genetic network and gene set enrichment analysis to identify biomarkers related to cigarette smoking and lung cancer.
    Fang X; Netzer M; Baumgartner C; Bai C; Wang X
    Cancer Treat Rev; 2013 Feb; 39(1):77-88. PubMed ID: 22789435
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Integrated bioinformatics analysis for differentially expressed genes and signaling pathways identification in gastric cancer.
    Yang C; Gong A
    Int J Med Sci; 2021; 18(3):792-800. PubMed ID: 33437215
    [No Abstract]   [Full Text] [Related]  

  • 59. CRSD: a comprehensive web server for composite regulatory signature discovery.
    Liu CC; Lin CC; Chen WS; Chen HY; Chang PC; Chen JJ; Yang PC
    Nucleic Acids Res; 2006 Jul; 34(Web Server issue):W571-7. PubMed ID: 16845073
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Dual activation of pathways regulated by steroid receptors and peptide growth factors in primary prostate cancer revealed by Factor Analysis of microarray data.
    Lozano JJ; Soler M; Bermudo R; Abia D; Fernandez PL; Thomson TM; Ortiz AR
    BMC Genomics; 2005 Aug; 6():109. PubMed ID: 16107210
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.