BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

596 related articles for article (PubMed ID: 20025847)

  • 21. The effects of temperature, pressure and peptide incorporation on ternary model raft mixtures--a Laurdan fluorescence spectroscopy study.
    Periasamy N; Winter R
    Biochim Biophys Acta; 2006 Mar; 1764(3):398-404. PubMed ID: 16330267
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A combined fluorescence spectroscopy, confocal and 2-photon microscopy approach to re-evaluate the properties of sphingolipid domains.
    Pinto SN; Fernandes F; Fedorov A; Futerman AH; Silva LC; Prieto M
    Biochim Biophys Acta; 2013 Sep; 1828(9):2099-110. PubMed ID: 23702462
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Macroscopic and Nanoscopic Heterogeneous Structures in a Three-Component Lipid Bilayer Mixtures Determined by Atomic Force Microscopy.
    Khadka NK; Ho CS; Pan J
    Langmuir; 2015 Nov; 31(45):12417-25. PubMed ID: 26506226
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Preferential accumulation of Abeta(1-42) on gel phase domains of lipid bilayers: an AFM and fluorescence study.
    Choucair A; Chakrapani M; Chakravarthy B; Katsaras J; Johnston LJ
    Biochim Biophys Acta; 2007 Jan; 1768(1):146-54. PubMed ID: 17052685
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Engineering Lipid Structure for Recognition of the Liquid Ordered Membrane Phase.
    Bordovsky SS; Wong CS; Bachand GD; Stachowiak JC; Sasaki DY
    Langmuir; 2016 Nov; 32(47):12527-12533. PubMed ID: 27564087
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A lipid matrix model of membrane raft structure.
    Quinn PJ
    Prog Lipid Res; 2010 Oct; 49(4):390-406. PubMed ID: 20478335
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Characterization of the ternary mixture of sphingomyelin, POPC, and cholesterol: support for an inhomogeneous lipid distribution at high temperatures.
    Bunge A; Müller P; Stöckl M; Herrmann A; Huster D
    Biophys J; 2008 Apr; 94(7):2680-90. PubMed ID: 18178660
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Influence of the lipid anchor motif of N-ras on the interaction with lipid membranes: a surface plasmon resonance study.
    Gohlke A; Triola G; Waldmann H; Winter R
    Biophys J; 2010 May; 98(10):2226-35. PubMed ID: 20483331
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fluid domain patterns in free-standing membranes captured on a solid support.
    Bhatia T; Husen P; Ipsen JH; Bagatolli LA; Simonsen AC
    Biochim Biophys Acta; 2014 Oct; 1838(10):2503-10. PubMed ID: 24866014
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Membrane microdomains: role of ceramides in the maintenance of their structure and functions.
    Staneva G; Momchilova A; Wolf C; Quinn PJ; Koumanov K
    Biochim Biophys Acta; 2009 Mar; 1788(3):666-75. PubMed ID: 19059203
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Multimerizable HIV Gag derivative binds to the liquid-disordered phase in model membranes.
    Keller H; Kräusslich HG; Schwille P
    Cell Microbiol; 2013 Feb; 15(2):237-47. PubMed ID: 23121220
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Is a fluid-mosaic model of biological membranes fully relevant? Studies on lipid organization in model and biological membranes.
    Wiśniewska A; Draus J; Subczynski WK
    Cell Mol Biol Lett; 2003; 8(1):147-59. PubMed ID: 12655369
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fluorescent probe partitioning in GUVs of binary phospholipid mixtures: implications for interpreting phase behavior.
    Juhasz J; Davis JH; Sharom FJ
    Biochim Biophys Acta; 2012 Jan; 1818(1):19-26. PubMed ID: 21945563
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nanoscale imaging of domains in supported lipid membranes.
    Johnston LJ
    Langmuir; 2007 May; 23(11):5886-95. PubMed ID: 17428076
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Partitioning of pyrene-labeled phospho- and sphingolipids between ordered and disordered bilayer domains.
    Koivusalo M; Alvesalo J; Virtanen JA; Somerharju P
    Biophys J; 2004 Feb; 86(2):923-35. PubMed ID: 14747328
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Lipoprotein insertion into membranes of various complexity: lipid sorting, interfacial adsorption and protein clustering.
    Erwin N; Sperlich B; Garivet G; Waldmann H; Weise K; Winter R
    Phys Chem Chem Phys; 2016 Apr; 18(13):8954-62. PubMed ID: 26960984
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Solution Asymmetry and Salt Expand Fluid-Fluid Coexistence Regions of Charged Membranes.
    Kubsch B; Robinson T; Lipowsky R; Dimova R
    Biophys J; 2016 Jun; 110(12):2581-2584. PubMed ID: 27288275
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ceramide-domain formation and collapse in lipid rafts: membrane reorganization by an apoptotic lipid.
    Silva LC; de Almeida RF; Castro BM; Fedorov A; Prieto M
    Biophys J; 2007 Jan; 92(2):502-16. PubMed ID: 17056734
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Sorting of streptavidin protein coats on phase-separating model membranes.
    Manley S; Horton MR; Lecszynski S; Gast AP
    Biophys J; 2008 Sep; 95(5):2301-7. PubMed ID: 18502811
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Visualization of lipid domain-specific protein sorting in giant unilamellar vesicles.
    Stöckl M; Nikolaus J; Herrmann A
    Methods Mol Biol; 2010; 606():115-26. PubMed ID: 20013394
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 30.