BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

598 related articles for article (PubMed ID: 20025847)

  • 41. Complex roles of hybrid lipids in the composition, order, and size of lipid membrane domains.
    Hassan-Zadeh E; Baykal-Caglar E; Alwarawrah M; Huang J
    Langmuir; 2014 Feb; 30(5):1361-9. PubMed ID: 24456489
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Cholesterol strongly affects the organization of lipid monolayers studied as models of the milk fat globule membrane: Condensing effect and change in the lipid domain morphology.
    Murthy AV; Guyomarc'h F; Paboeuf G; Vié V; Lopez C
    Biochim Biophys Acta; 2015 Oct; 1848(10 Pt A):2308-16. PubMed ID: 26087463
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Permeabilization of raft-containing lipid vesicles by delta-lysin: a mechanism for cell sensitivity to cytotoxic peptides.
    Pokorny A; Almeida PF
    Biochemistry; 2005 Jul; 44(27):9538-44. PubMed ID: 15996108
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Disrupting membrane raft domains by alkylphospholipids.
    Gomide AB; Thomé CH; dos Santos GA; Ferreira GA; Faça VM; Rego EM; Greene LJ; Stabeli RG; Ciancaglini P; Itri R
    Biochim Biophys Acta; 2013 May; 1828(5):1384-9. PubMed ID: 23376656
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The polar nature of 7-ketocholesterol determines its location within membrane domains and the kinetics of membrane microsolubilization by apolipoprotein A-I.
    Massey JB; Pownall HJ
    Biochemistry; 2005 Aug; 44(30):10423-33. PubMed ID: 16042420
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Rapid phase change of lipid microdomains in giant vesicles induced by conversion of sphingomyelin to ceramide.
    Taniguchi Y; Ohba T; Miyata H; Ohki K
    Biochim Biophys Acta; 2006 Feb; 1758(2):145-53. PubMed ID: 16580624
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Designing lipids for selective partitioning into liquid ordered membrane domains.
    Momin N; Lee S; Gadok AK; Busch DJ; Bachand GD; Hayden CC; Stachowiak JC; Sasaki DY
    Soft Matter; 2015 Apr; 11(16):3241-50. PubMed ID: 25772372
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Thermal-driven domain and cargo transport in lipid membranes.
    Talbot EL; Parolini L; Kotar J; Di Michele L; Cicuta P
    Proc Natl Acad Sci U S A; 2017 Jan; 114(5):846-851. PubMed ID: 28096361
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Phosphatidylserine lipids and membrane order precisely regulate the activity of Polybia-MP1 peptide.
    Alvares DS; Ruggiero Neto J; Ambroggio EE
    Biochim Biophys Acta Biomembr; 2017 Jun; 1859(6):1067-1074. PubMed ID: 28274844
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Mechanisms of antimicrobial peptide action: studies of indolicidin assembly at model membrane interfaces by in situ atomic force microscopy.
    Shaw JE; Alattia JR; Verity JE; Privé GG; Yip CM
    J Struct Biol; 2006 Apr; 154(1):42-58. PubMed ID: 16459101
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The sticholysin family of pore-forming toxins induces the mixing of lipids in membrane domains.
    Ros U; Edwards MA; Epand RF; Lanio ME; Schreier S; Yip CM; Alvarez C; Epand RM
    Biochim Biophys Acta; 2013 Nov; 1828(11):2757-62. PubMed ID: 23954588
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Characterizing the interactions of two lipid modifications with lipid rafts: farnesyl anchors vs. palmitoyl anchors.
    Zhang T; Luo Q; Yang L; Jiang H; Yang H
    Eur Biophys J; 2018 Jan; 47(1):19-30. PubMed ID: 28585042
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Protein-protein and protein-lipid interactions in domain-assembly: lessons from giant unilamellar vesicles.
    Kahya N
    Biochim Biophys Acta; 2010 Jul; 1798(7):1392-8. PubMed ID: 20211599
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Differential dynamic and structural behavior of lipid-cholesterol domains in model membranes.
    Aguilar LF; Pino JA; Soto-Arriaza MA; Cuevas FJ; Sánchez S; Sotomayor CP
    PLoS One; 2012; 7(6):e40254. PubMed ID: 22768264
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Perfringolysin O association with ordered lipid domains: implications for transmembrane protein raft affinity.
    Nelson LD; Chiantia S; London E
    Biophys J; 2010 Nov; 99(10):3255-63. PubMed ID: 21081073
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Lipid rafts reconstituted in model membranes.
    Dietrich C; Bagatolli LA; Volovyk ZN; Thompson NL; Levi M; Jacobson K; Gratton E
    Biophys J; 2001 Mar; 80(3):1417-28. PubMed ID: 11222302
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Atomic force microscopy of nanometric liposome adsorption and nanoscopic membrane domain formation.
    Tokumasu F; Jin AJ; Feigenson GW; Dvorak JA
    Ultramicroscopy; 2003; 97(1-4):217-27. PubMed ID: 12801674
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Role of Aminophospholipids in the Formation of Lipid Rafts in Model Membranes.
    Hazarosova R; Momchilova A; Koumanov K; Petkova D; Staneva G
    J Fluoresc; 2015 Jul; 25(4):1037-43. PubMed ID: 26076930
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Probing Colocalization of N-Ras and K-Ras4B Lipoproteins in Model Biomembranes.
    Li L; Dwivedi M; Patra S; Erwin N; Möbitz S; Winter R
    Chembiochem; 2019 May; 20(9):1190-1195. PubMed ID: 30604476
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Secondary structure of lipidated Ras bound to a lipid bilayer.
    Güldenhaupt J; Adigüzel Y; Kuhlmann J; Waldmann H; Kötting C; Gerwert K
    FEBS J; 2008 Dec; 275(23):5910-8. PubMed ID: 19021766
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 30.