These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 20026102)

  • 1. Vitrification of porcine articular cartilage.
    Brockbank KG; Chen ZZ; Song YC
    Cryobiology; 2010 Apr; 60(2):217-21. PubMed ID: 20026102
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of rapid cooling on articular cartilage.
    Guan J; Urban JP; Li ZH; Ferguson DJ; Gong CY; Cui ZF
    Cryobiology; 2006 Jun; 52(3):430-9. PubMed ID: 16620806
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of Superparamagnetic Nanoparticles on Nucleation and Crystal Growth in the Vitrified VS55 During Warming.
    Xu Y; Yu HM; Niu YQ; Luo SC; Cheng X
    Cryo Letters; 2016; 37(6):448-454. PubMed ID: 28072433
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of three multi-cryoprotectant loading protocols for vitrification of porcine articular cartilage.
    Wu K; Shardt N; Laouar L; Chen Z; Prasad V; Elliott JAW; Jomha NM
    Cryobiology; 2020 Feb; 92():151-160. PubMed ID: 31917159
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chondrocyte Viability of Particulated Porcine Articular Cartilage Is Maintained in Tissue Storage After Cryoprotectant Exposure, Vitrification, and Tissue Warming.
    Crisol M; Wu K; Congdon B; Skene-Arnold TD; Laouar L; Elliott JAW; Jomha NM
    Cartilage; 2024 Jun; 15(2):139-146. PubMed ID: 37148124
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measurement of Specific Heat and Crystallization in VS55, DP6, and M22 Cryoprotectant Systems With and Without Sucrose.
    Phatak S; Natesan H; Choi J; Brockbank KGM; Bischof JC
    Biopreserv Biobank; 2018 Aug; 16(4):270-277. PubMed ID: 29958001
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vitrification of Intact Porcine Femoral Condyle Allografts Using an Optimized Approach.
    Wu K; Laouar L; Elliott JAW; Jomha NM
    Cartilage; 2021 Dec; 13(2_suppl):1688S-1699S. PubMed ID: 33100019
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of the permeation kinetics of formamide in porcine articular cartilage.
    Dong R; Clark S; Laouar L; Heinrichs L; Wu K; Jomha NM; Elliott JAW
    Cryobiology; 2022 Aug; 107():57-63. PubMed ID: 35636502
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of cryoprotectant vehicle solution on cartilage cell viability following vitrification.
    Stadnyk M; Sevick JL; Wu K; Elliott JAW; Jomha NM
    Cell Tissue Bank; 2022 Mar; 23(1):31-41. PubMed ID: 33629239
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cryoprotectant kinetic analysis of a human articular cartilage vitrification protocol.
    Shardt N; Al-Abbasi KK; Yu H; Jomha NM; McGann LE; Elliott JA
    Cryobiology; 2016 Aug; 73(1):80-92. PubMed ID: 27221520
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vitreous preservation of articular cartilage grafts.
    Song YC; An YH; Kang QK; Li C; Boggs JM; Chen Z; Taylor MJ; Brockbank KG
    J Invest Surg; 2004; 17(2):65-70. PubMed ID: 15204712
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vitreous preservation of articular cartilage from cryoinjury in rabbits.
    Onari I; Hayashi M; Ozaki N; Tsuchiya H
    Cryobiology; 2012 Oct; 65(2):98-103. PubMed ID: 22659105
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Using engineering models to shorten cryoprotectant loading time for the vitrification of articular cartilage.
    Shardt N; Chen Z; Yuan SC; Wu K; Laouar L; Jomha NM; Elliott JAW
    Cryobiology; 2020 Feb; 92():180-188. PubMed ID: 31952947
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improved tissue cryopreservation using inductive heating of magnetic nanoparticles.
    Manuchehrabadi N; Gao Z; Zhang J; Ring HL; Shao Q; Liu F; McDermott M; Fok A; Rabin Y; Brockbank KG; Garwood M; Haynes CL; Bischof JC
    Sci Transl Med; 2017 Mar; 9(379):. PubMed ID: 28251904
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vitrification of Heart Valve Tissues.
    Brockbank KGM; Chen Z; Greene ED; Campbell LH
    Methods Mol Biol; 2021; 2180():593-605. PubMed ID: 32797437
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cryopreservation of articular cartilage. Part 3: The liquidus-tracking method.
    Pegg DE; Wang L; Vaughan D
    Cryobiology; 2020 Apr; 93():12-17. PubMed ID: 32329717
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of vitrification on mechanical properties of porcine articular cartilage.
    He J; Wine I; Wu K; Sevick J; Laouar L; Jomha NM; Westover L
    Proc Inst Mech Eng H; 2022 Oct; 236(10):1521-1527. PubMed ID: 36169308
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cryopreservation of cartilage cell and tissue for biobanking.
    Cetinkaya G; Arat S
    Cryobiology; 2011 Dec; 63(3):292-7. PubMed ID: 22020192
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of sucrose supplementation on chondrocyte viability in porcine articular cartilage following vitrification.
    Yong KW; Wu K; Elliott JAW; Jomha NM
    Cryobiology; 2022 Dec; 109():53-61. PubMed ID: 36155184
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intramatrix events during cryopreservation of porcine articular cartilage using rapid cooling.
    Jomha NM; Anoop PC; McGann LE
    J Orthop Res; 2004 Jan; 22(1):152-7. PubMed ID: 14656674
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.