These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 20026130)

  • 21. Genetic selection for and molecular dynamic modeling of a protein transmembrane domain multimerization motif from a random Escherichia coli genomic library.
    Leeds JA; Boyd D; Huber DR; Sonoda GK; Luu HT; Engelman DM; Beckwith J
    J Mol Biol; 2001 Oct; 313(1):181-95. PubMed ID: 11601855
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A transmembrane helix dimer: structure and implications.
    MacKenzie KR; Prestegard JH; Engelman DM
    Science; 1997 Apr; 276(5309):131-3. PubMed ID: 9082985
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The single transmembrane domains of ErbB receptors self-associate in cell membranes.
    Mendrola JM; Berger MB; King MC; Lemmon MA
    J Biol Chem; 2002 Feb; 277(7):4704-12. PubMed ID: 11741943
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Insights into the transmembrane helix associations of kit ligand by molecular dynamics simulation and TOXCAT.
    Chai M; Liu B; Sun F; Wei P; Chen P; Xu L; Luo SZ
    Proteins; 2017 Jul; 85(7):1362-1370. PubMed ID: 28370370
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Sequence context modulates the stability of a GxxxG-mediated transmembrane helix-helix dimer.
    Doura AK; Kobus FJ; Dubrovsky L; Hibbard E; Fleming KG
    J Mol Biol; 2004 Aug; 341(4):991-8. PubMed ID: 15289100
    [TBL] [Abstract][Full Text] [Related]  

  • 26. GXXXG and AXXXA: common alpha-helical interaction motifs in proteins, particularly in extremophiles.
    Kleiger G; Grothe R; Mallick P; Eisenberg D
    Biochemistry; 2002 May; 41(19):5990-7. PubMed ID: 11993993
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mutational analysis of threonine 402 adjacent to the GXXXG dimerization motif in transmembrane segment 1 of ABCG2.
    Polgar O; Ierano C; Tamaki A; Stanley B; Ward Y; Xia D; Tarasova N; Robey RW; Bates SE
    Biochemistry; 2010 Mar; 49(10):2235-45. PubMed ID: 20088606
    [TBL] [Abstract][Full Text] [Related]  

  • 28. NMR-based approach to measure the free energy of transmembrane helix-helix interactions.
    Mineev KS; Lesovoy DM; Usmanova DR; Goncharuk SA; Shulepko MA; Lyukmanova EN; Kirpichnikov MP; Bocharov EV; Arseniev AS
    Biochim Biophys Acta; 2014 Jan; 1838(1 Pt B):164-72. PubMed ID: 24036227
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Transmembrane helix-helix interactions are modulated by the sequence context and by lipid bilayer properties.
    Cymer F; Veerappan A; Schneider D
    Biochim Biophys Acta; 2012 Apr; 1818(4):963-73. PubMed ID: 21827736
    [TBL] [Abstract][Full Text] [Related]  

  • 30. BNIP3 heterodimerizes with Bcl-2/Bcl-X(L) and induces cell death independent of a Bcl-2 homology 3 (BH3) domain at both mitochondrial and nonmitochondrial sites.
    Ray R; Chen G; Vande Velde C; Cizeau J; Park JH; Reed JC; Gietz RD; Greenberg AH
    J Biol Chem; 2000 Jan; 275(2):1439-48. PubMed ID: 10625696
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The GxxxG-containing transmembrane domain of the CCK4 oncogene does not encode preferential self-interactions.
    Kobus FJ; Fleming KG
    Biochemistry; 2005 Feb; 44(5):1464-70. PubMed ID: 15683231
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A frequent, GxxxG-mediated, transmembrane association motif is optimized for the formation of interhelical Cα-H hydrogen bonds.
    Mueller BK; Subramaniam S; Senes A
    Proc Natl Acad Sci U S A; 2014 Mar; 111(10):E888-95. PubMed ID: 24569864
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hydrophobic helical hairpins: design and packing interactions in membrane environments.
    Johnson RM; Heslop CL; Deber CM
    Biochemistry; 2004 Nov; 43(45):14361-9. PubMed ID: 15533040
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ionic interactions promote transmembrane helix-helix association depending on sequence context.
    Herrmann JR; Fuchs A; Panitz JC; Eckert T; Unterreitmeier S; Frishman D; Langosch D
    J Mol Biol; 2010 Feb; 396(2):452-61. PubMed ID: 19961858
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dimer interface of transmembrane domains for neu/erbB-2 receptor dimerization and transforming activation: a model revealed by molecular dynamics simulations.
    Sajot N; Genest M
    J Biomol Struct Dyn; 2001 Aug; 19(1):15-31. PubMed ID: 11565846
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Transmembrane helix-helix interactions: comparative simulations of the glycophorin a dimer.
    Cuthbertson JM; Bond PJ; Sansom MS
    Biochemistry; 2006 Dec; 45(48):14298-310. PubMed ID: 17128969
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Motifs of two small residues can assist but are not sufficient to mediate transmembrane helix interactions.
    Schneider D; Engelman DM
    J Mol Biol; 2004 Oct; 343(4):799-804. PubMed ID: 15476801
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Role of GxxxG Motifs in Transmembrane Domain Interactions.
    Teese MG; Langosch D
    Biochemistry; 2015 Aug; 54(33):5125-35. PubMed ID: 26244771
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Non-native interhelical hydrogen bonds in the cystic fibrosis transmembrane conductance regulator domain modulated by polar mutations.
    Choi MY; Cardarelli L; Therien AG; Deber CM
    Biochemistry; 2004 Jun; 43(25):8077-83. PubMed ID: 15209503
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The yeast F(1)F(0)-ATP synthase: analysis of the molecular organization of subunit g and the importance of a conserved GXXXG motif.
    Saddar S; Stuart RA
    J Biol Chem; 2005 Jul; 280(26):24435-42. PubMed ID: 15886192
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.