These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 20026131)

  • 21. Heterogeneity and dynamics of the ligand recognition mode in purine-sensing riboswitches.
    Jain N; Zhao L; Liu JD; Xia T
    Biochemistry; 2010 May; 49(17):3703-14. PubMed ID: 20345178
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ligand-mediated and tertiary interactions cooperatively stabilize the P1 region in the guanine-sensing riboswitch.
    Hanke CA; Gohlke H
    PLoS One; 2017; 12(6):e0179271. PubMed ID: 28640851
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ligand Selectivity Mechanism and Conformational Changes in Guanine Riboswitch by Molecular Dynamics Simulations and Free Energy Calculations.
    Hu G; Ma A; Wang J
    J Chem Inf Model; 2017 Apr; 57(4):918-928. PubMed ID: 28345904
    [TBL] [Abstract][Full Text] [Related]  

  • 24. MD simulations of ligand-bound and ligand-free aptamer: molecular level insights into the binding and switching mechanism of the add A-riboswitch.
    Sharma M; Bulusu G; Mitra A
    RNA; 2009 Sep; 15(9):1673-92. PubMed ID: 19625387
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Using simulations and kinetic network models to reveal the dynamics and functions of riboswitches.
    Lin JC; Yoon J; Hyeon C; Thirumalai D
    Methods Enzymol; 2015; 553():235-58. PubMed ID: 25726468
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ligand-induced folding of the adenosine deaminase A-riboswitch and implications on riboswitch translational control.
    Rieder R; Lang K; Graber D; Micura R
    Chembiochem; 2007 May; 8(8):896-902. PubMed ID: 17440909
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Magnesium ions mitigate metastable states in the regulatory landscape of mRNA elements.
    Ding E; Chaudhury SN; Prajapati JD; Onuchic JN; Sanbonmatsu KY
    RNA; 2024 Jul; 30(8):992-1010. PubMed ID: 38777381
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Approach to the unfolding and folding dynamics of add A-riboswitch upon adenine dissociation using a coarse-grained elastic network model.
    Li C; Lv D; Zhang L; Yang F; Wang C; Su J; Zhang Y
    J Chem Phys; 2016 Jul; 145(1):014104. PubMed ID: 27394096
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ligand-dependent folding of the three-way junction in the purine riboswitch.
    Stoddard CD; Gilbert SD; Batey RT
    RNA; 2008 Apr; 14(4):675-84. PubMed ID: 18268025
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Folding of the adenine riboswitch.
    Lemay JF; Penedo JC; Tremblay R; Lilley DM; Lafontaine DA
    Chem Biol; 2006 Aug; 13(8):857-68. PubMed ID: 16931335
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Kissing loop interaction in adenine riboswitch: insights from umbrella sampling simulations.
    Di Palma F; Bottaro S; Bussi G
    BMC Bioinformatics; 2015; 16 Suppl 9(Suppl 9):S6. PubMed ID: 26051557
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ligand-Induced Stabilization of a Duplex-like Architecture Is Crucial for the Switching Mechanism of the SAM-III Riboswitch.
    Suresh G; Srinivasan H; Nanda S; Priyakumar UD
    Biochemistry; 2016 Jun; 55(24):3349-60. PubMed ID: 27249101
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structural insights into the interactions of xpt riboswitch with novel guanine analogues: a molecular dynamics simulation study.
    Jain SS; Sonavane UB; Uppuladinne MV; McLaughlin EC; Wang W; Black S; Joshi RR
    J Biomol Struct Dyn; 2015; 33(2):234-43. PubMed ID: 24404773
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nonlocal helix formation is key to understanding S-adenosylmethionine-1 riboswitch function.
    Whitford PC; Schug A; Saunders J; Hennelly SP; Onuchic JN; Sanbonmatsu KY
    Biophys J; 2009 Jan; 96(2):L7-9. PubMed ID: 19167285
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Potential effects of metal ion induced two-state allostery on the regulatory mechanism of add adenine riboswitch.
    Bao L; Kang WB; Xiao Y
    Commun Biol; 2022 Oct; 5(1):1120. PubMed ID: 36273041
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Comparative study between transcriptionally- and translationally-acting adenine riboswitches reveals key differences in riboswitch regulatory mechanisms.
    Lemay JF; Desnoyers G; Blouin S; Heppell B; Bastet L; St-Pierre P; Massé E; Lafontaine DA
    PLoS Genet; 2011 Jan; 7(1):e1001278. PubMed ID: 21283784
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structures of riboswitch RNA reaction states by mix-and-inject XFEL serial crystallography.
    Stagno JR; Liu Y; Bhandari YR; Conrad CE; Panja S; Swain M; Fan L; Nelson G; Li C; Wendel DR; White TA; Coe JD; Wiedorn MO; Knoska J; Oberthuer D; Tuckey RA; Yu P; Dyba M; Tarasov SG; Weierstall U; Grant TD; Schwieters CD; Zhang J; Ferré-D'Amaré AR; Fromme P; Draper DE; Liang M; Hunter MS; Boutet S; Tan K; Zuo X; Ji X; Barty A; Zatsepin NA; Chapman HN; Spence JC; Woodson SA; Wang YX
    Nature; 2017 Jan; 541(7636):242-246. PubMed ID: 27841871
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Metal-ion binding and metal-ion induced folding of the adenine-sensing riboswitch aptamer domain.
    Noeske J; Schwalbe H; Wöhnert J
    Nucleic Acids Res; 2007; 35(15):5262-73. PubMed ID: 17686787
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dehydration from conserved stem regions is fundamental for ligand-dependent conformational transition of the adenine-specific riboswitch.
    Kumar V; Endoh T; Murakami K; Sugimoto N
    Chem Commun (Camb); 2012 Oct; 48(78):9693-5. PubMed ID: 22854864
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The dynamic nature of RNA as key to understanding riboswitch mechanisms.
    Haller A; Soulière MF; Micura R
    Acc Chem Res; 2011 Dec; 44(12):1339-48. PubMed ID: 21678902
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.