BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 20026215)

  • 1. Towards the understanding of resistance mechanisms in clinically isolated trimethoprim-resistant, methicillin-resistant Staphylococcus aureus dihydrofolate reductase.
    Frey KM; Lombardo MN; Wright DL; Anderson AC
    J Struct Biol; 2010 Apr; 170(1):93-7. PubMed ID: 20026215
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crystal structures of wild-type and mutant methicillin-resistant Staphylococcus aureus dihydrofolate reductase reveal an alternate conformation of NADPH that may be linked to trimethoprim resistance.
    Frey KM; Liu J; Lombardo MN; Bolstad DB; Wright DL; Anderson AC
    J Mol Biol; 2009 Apr; 387(5):1298-308. PubMed ID: 19249312
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prospective screening of novel antibacterial inhibitors of dihydrofolate reductase for mutational resistance.
    Frey KM; Viswanathan K; Wright DL; Anderson AC
    Antimicrob Agents Chemother; 2012 Jul; 56(7):3556-62. PubMed ID: 22491688
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chiral evasion and stereospecific antifolate resistance in Staphylococcus aureus.
    Wang S; Reeve SM; Holt GT; Ojewole AA; Frenkel MS; Gainza P; Keshipeddy S; Fowler VG; Wright DL; Donald BR
    PLoS Comput Biol; 2022 Feb; 18(2):e1009855. PubMed ID: 35143481
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sequence-specific 1H, 13C and 15N assignment of the TMP-resistant dihydrofolate reductase mutant DHFR(F98Y) in the ternary complex with TMP and NADPH.
    Altmann S; Labhardt AM; Senn H; Wüthrich K
    J Biomol NMR; 1997 Jun; 9(4):445-6. PubMed ID: 9255948
    [No Abstract]   [Full Text] [Related]  

  • 6. Toward Broad Spectrum Dihydrofolate Reductase Inhibitors Targeting Trimethoprim Resistant Enzymes Identified in Clinical Isolates of Methicillin Resistant
    Reeve SM; Si D; Krucinska J; Yan Y; Viswanathan K; Wang S; Holt GT; Frenkel MS; Ojewole AA; Estrada A; Agabiti SS; Alverson JB; Gibson ND; Priestley ND; Wiemer AJ; Donald BR; Wright DL
    ACS Infect Dis; 2019 Nov; 5(11):1896-1906. PubMed ID: 31565920
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A single amino acid substitution in Staphylococcus aureus dihydrofolate reductase determines trimethoprim resistance.
    Dale GE; Broger C; D'Arcy A; Hartman PG; DeHoogt R; Jolidon S; Kompis I; Labhardt AM; Langen H; Locher H; Page MG; Stüber D; Then RL; Wipf B; Oefner C
    J Mol Biol; 1997 Feb; 266(1):23-30. PubMed ID: 9054967
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nonracemic Antifolates Stereoselectively Recruit Alternate Cofactors and Overcome Resistance in S. aureus.
    Keshipeddy S; Reeve SM; Anderson AC; Wright DL
    J Am Chem Soc; 2015 Jul; 137(28):8983-90. PubMed ID: 26098608
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystal Structures of Trimethoprim-Resistant DfrA1 Rationalize Potent Inhibition by Propargyl-Linked Antifolates.
    Lombardo MN; G-Dayanandan N; Wright DL; Anderson AC
    ACS Infect Dis; 2016 Feb; 2(2):149-56. PubMed ID: 27624966
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Charged Propargyl-Linked Antifolates Reveal Mechanisms of Antifolate Resistance and Inhibit Trimethoprim-Resistant MRSA Strains Possessing Clinically Relevant Mutations.
    Reeve SM; Scocchera E; Ferreira JJ; G-Dayanandan N; Keshipeddy S; Wright DL; Anderson AC
    J Med Chem; 2016 Jul; 59(13):6493-500. PubMed ID: 27308944
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cloning and characterization of a novel trimethoprim-resistant dihydrofolate reductase from a nosocomial isolate of Staphylococcus aureus CM.S2 (IMCJ1454).
    Sekiguchi J; Tharavichitkul P; Miyoshi-Akiyama T; Chupia V; Fujino T; Araake M; Irie A; Morita K; Kuratsuji T; Kirikae T
    Antimicrob Agents Chemother; 2005 Sep; 49(9):3948-51. PubMed ID: 16127079
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Iclaprim, a novel diaminopyrimidine with potent activity on trimethoprim sensitive and resistant bacteria.
    Schneider P; Hawser S; Islam K
    Bioorg Med Chem Lett; 2003 Dec; 13(23):4217-21. PubMed ID: 14623005
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibitory properties and X-ray crystallographic study of the binding of AR-101, AR-102 and iclaprim in ternary complexes with NADPH and dihydrofolate reductase from Staphylococcus aureus.
    Oefner C; Parisi S; Schulz H; Lociuro S; Dale GE
    Acta Crystallogr D Biol Crystallogr; 2009 Aug; 65(Pt 8):751-7. PubMed ID: 19622858
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural comparison of chromosomal and exogenous dihydrofolate reductase from Staphylococcus aureus in complex with the potent inhibitor trimethoprim.
    Heaslet H; Harris M; Fahnoe K; Sarver R; Putz H; Chang J; Subramanyam C; Barreiro G; Miller JR
    Proteins; 2009 Aug; 76(3):706-17. PubMed ID: 19280600
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Increased substrate affinity in the Escherichia coli L28R dihydrofolate reductase mutant causes trimethoprim resistance.
    Abdizadeh H; Tamer YT; Acar O; Toprak E; Atilgan AR; Atilgan C
    Phys Chem Chem Phys; 2017 May; 19(18):11416-11428. PubMed ID: 28422217
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crystal structures of Klebsiella pneumoniae dihydrofolate reductase bound to propargyl-linked antifolates reveal features for potency and selectivity.
    Lamb KM; Lombardo MN; Alverson J; Priestley ND; Wright DL; Anderson AC
    Antimicrob Agents Chemother; 2014 Dec; 58(12):7484-91. PubMed ID: 25288083
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Increased hydrophobic interactions of iclaprim with Staphylococcus aureus dihydrofolate reductase are responsible for the increase in affinity and antibacterial activity.
    Oefner C; Bandera M; Haldimann A; Laue H; Schulz H; Mukhija S; Parisi S; Weiss L; Lociuro S; Dale GE
    J Antimicrob Chemother; 2009 Apr; 63(4):687-98. PubMed ID: 19211577
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure-guided functional studies of plasmid-encoded dihydrofolate reductases reveal a common mechanism of trimethoprim resistance in Gram-negative pathogens.
    Krucinska J; Lombardo MN; Erlandsen H; Estrada A; Si D; Viswanathan K; Wright DL
    Commun Biol; 2022 May; 5(1):459. PubMed ID: 35562546
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vitro efficacy of new antifolates against trimethoprim-resistant Bacillus anthracis.
    Barrow EW; Dreier J; Reinelt S; Bourne PC; Barrow WW
    Antimicrob Agents Chemother; 2007 Dec; 51(12):4447-52. PubMed ID: 17875993
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Trimethoprim resistance of dihydrofolate reductase variants from clinical isolates of Pneumocystis jirovecii.
    Queener SF; Cody V; Pace J; Torkelson P; Gangjee A
    Antimicrob Agents Chemother; 2013 Oct; 57(10):4990-8. PubMed ID: 23896474
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.