BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 20026383)

  • 1. Influence of sensory inputs and motor demands on the control of the centre of mass velocity during gait initiation in humans.
    Chastan N; Westby GW; du Montcel ST; Do MC; Chong RK; Agid Y; Welter ML
    Neurosci Lett; 2010 Jan; 469(3):400-4. PubMed ID: 20026383
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of nigral stimulation on locomotion and postural stability in patients with Parkinson's disease.
    Chastan N; Westby GW; Yelnik J; Bardinet E; Do MC; Agid Y; Welter ML
    Brain; 2009 Jan; 132(Pt 1):172-84. PubMed ID: 19001482
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Age-related changes in the center of mass velocity control during walking.
    Chong RK; Chastan N; Welter ML; Do MC
    Neurosci Lett; 2009 Jul; 458(1):23-7. PubMed ID: 19442871
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effects of human ankle muscle vibration on posture and balance during adaptive locomotion.
    Sorensen KL; Hollands MA; Patla E
    Exp Brain Res; 2002 Mar; 143(1):24-34. PubMed ID: 11907687
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Why anticipatory postural adjustments in gait initiation need to be modified when stepping up onto a new level?
    GĂ©lat T; Le Pellec A
    Neurosci Lett; 2007 Dec; 429(1):17-21. PubMed ID: 17964073
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Control of vertical components of gait during initiation of walking in normal adults and patients with progressive supranuclear palsy.
    Welter ML; Do MC; Chastan N; Torny F; Bloch F; du Montcel ST; Agid Y
    Gait Posture; 2007 Sep; 26(3):393-9. PubMed ID: 17126017
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gait and balance disorders in Parkinson's disease: impaired active braking of the fall of centre of gravity.
    Chastan N; Do MC; Bonneville F; Torny F; Bloch F; Westby GW; Dormont D; Agid Y; Welter ML
    Mov Disord; 2009 Jan; 24(2):188-95. PubMed ID: 18973252
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Control of dynamic stability during gait termination on a slippery surface.
    Oates AR; Patla AE; Frank JS; Greig MA
    J Neurophysiol; 2005 Jan; 93(1):64-70. PubMed ID: 15295010
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Visual guidance of landing behaviour when stepping down to a new level.
    Buckley JG; MacLellan MJ; Tucker MW; Scally AJ; Bennett SJ
    Exp Brain Res; 2008 Jan; 184(2):223-32. PubMed ID: 17726604
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Changes in gait and EMG when walking with the Masai Barefoot Technique.
    Romkes J; Rudmann C; Brunner R
    Clin Biomech (Bristol, Avon); 2006 Jan; 21(1):75-81. PubMed ID: 16169641
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A neural network approach to motor-sensory relations during postural disturbance.
    Wu G; Haugh L; Sarnow M; Hitt J
    Brain Res Bull; 2006 Apr; 69(4):365-74. PubMed ID: 16624667
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Balance problems during obstacle crossing in children with Developmental Coordination Disorder.
    Deconinck FJ; Savelsbergh GJ; De Clercq D; Lenoir M
    Gait Posture; 2010 Jul; 32(3):327-31. PubMed ID: 20580557
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Timing-specific transfer of adapted muscle activity after walking in an elastic force field.
    Blanchette A; Bouyer LJ
    J Neurophysiol; 2009 Jul; 102(1):568-77. PubMed ID: 19420121
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of changing the initial horizontal location of the center of mass on the anticipatory postural adjustments and task performance associated with step initiation.
    Azuma T; Ito T; Yamashita N
    Gait Posture; 2007 Oct; 26(4):526-31. PubMed ID: 17194591
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Control of lateral balance in walking. Experimental findings in normal subjects and above-knee amputees.
    Hof AL; van Bockel RM; Schoppen T; Postema K
    Gait Posture; 2007 Feb; 25(2):250-8. PubMed ID: 16740390
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stance- and locomotion-dependent processing of vibration-induced proprioceptive inflow from multiple muscles in humans.
    Courtine G; De Nunzio AM; Schmid M; Beretta MV; Schieppati M
    J Neurophysiol; 2007 Jan; 97(1):772-9. PubMed ID: 17065250
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Visual deprivation leads to gait adaptations that are age- and context-specific: I. Step-time parameters.
    Hallemans A; Beccu S; Van Loock K; Ortibus E; Truijen S; Aerts P
    Gait Posture; 2009 Jul; 30(1):55-9. PubMed ID: 19342241
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel approach to mechanical foot stimulation during human locomotion under body weight support.
    Gravano S; Ivanenko YP; Maccioni G; Macellari V; Poppele RE; Lacquaniti F
    Hum Mov Sci; 2011 Apr; 30(2):352-67. PubMed ID: 20417979
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Altered muscle activation characteristics associated with single volitional forward stepping in middle-aged adults.
    Chu YH; Tang PF; Chen HY; Cheng CH
    Clin Biomech (Bristol, Avon); 2009 Nov; 24(9):735-43. PubMed ID: 19665267
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Changing the texture of footwear can alter gait patterns.
    Nurse MA; Hulliger M; Wakeling JM; Nigg BM; Stefanyshyn DJ
    J Electromyogr Kinesiol; 2005 Oct; 15(5):496-506. PubMed ID: 15935961
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.