BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 20026405)

  • 61. Leukemic stem cells and therapy resistance in acute myeloid leukemia.
    Stelmach P; Trumpp A
    Haematologica; 2023 Feb; 108(2):353-366. PubMed ID: 36722405
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Acute Myeloid Leukemia Stem Cells: Origin, Characteristics, and Clinical Implications.
    Long NA; Golla U; Sharma A; Claxton DF
    Stem Cell Rev Rep; 2022 Apr; 18(4):1211-1226. PubMed ID: 35050458
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Genomics of Acute Myeloid Leukemia Diagnosis and Pathways.
    Bullinger L; Döhner K; Döhner H
    J Clin Oncol; 2017 Mar; 35(9):934-946. PubMed ID: 28297624
    [TBL] [Abstract][Full Text] [Related]  

  • 64. The evolving roles of Wnt signaling in stem cell proliferation and differentiation, the development of human diseases, and therapeutic opportunities.
    Yu M; Qin K; Fan J; Zhao G; Zhao P; Zeng W; Chen C; Wang A; Wang Y; Zhong J; Zhu Y; Wagstaff W; Haydon RC; Luu HH; Ho S; Lee MJ; Strelzow J; Reid RR; He TC
    Genes Dis; 2024 May; 11(3):101026. PubMed ID: 38292186
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Global, national, and regional burden of acute myeloid leukemia among 60-89 years-old individuals: insights from a study covering the period 1990 to 2019.
    Chen P; Liu X; Zhao Y; Hu Y; Guo J; Wang H
    Front Public Health; 2023; 11():1329529. PubMed ID: 38274540
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Post-translational modifications of histones: Mechanisms, biological functions, and therapeutic targets.
    Liu R; Wu J; Guo H; Yao W; Li S; Lu Y; Jia Y; Liang X; Tang J; Zhang H
    MedComm (2020); 2023 Jun; 4(3):e292. PubMed ID: 37220590
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Paralog-specific signaling by IRAK1/4 maintains MyD88-independent functions in MDS/AML.
    Bennett J; Ishikawa C; Agarwal P; Yeung J; Sampson A; Uible E; Vick E; Bolanos LC; Hueneman K; Wunderlich M; Kolt A; Choi K; Volk A; Greis KD; Rosenbaum J; Hoyt SB; Thomas CJ; Starczynowski DT
    Blood; 2023 Sep; 142(11):989-1007. PubMed ID: 37172199
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Oncogenic drivers dictate immune control of acute myeloid leukemia.
    Austin RJ; Straube J; Halder R; Janardhanan Y; Bruedigam C; Witkowski M; Cooper L; Porter A; Braun M; Souza-Fonseca-Guimaraes F; Minnie SA; Cooper E; Jacquelin S; Song A; Bald T; Nakamura K; Hill GR; Aifantis I; Lane SW; Bywater MJ
    Nat Commun; 2023 Apr; 14(1):2155. PubMed ID: 37059710
    [TBL] [Abstract][Full Text] [Related]  

  • 69. The Potential Role of 3D In Vitro Acute Myeloid Leukemia Culture Models in Understanding Drug Resistance in Leukemia Stem Cells.
    Al-Kaabneh B; Frisch B; Aljitawi OS
    Cancers (Basel); 2022 Oct; 14(21):. PubMed ID: 36358676
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Leukemic Stem Cell: A Mini-Review on Clinical Perspectives.
    Barreto IV; Pessoa FMCP; Machado CB; Pantoja LDC; Ribeiro RM; Lopes GS; Amaral de Moraes ME; de Moraes Filho MO; de Souza LEB; Burbano RMR; Khayat AS; Moreira-Nunes CA
    Front Oncol; 2022; 12():931050. PubMed ID: 35814466
    [TBL] [Abstract][Full Text] [Related]  

  • 71. PLCG1 is required for AML1-ETO leukemia stem cell self-renewal.
    Schnoeder TM; Schwarzer A; Jayavelu AK; Hsu CJ; Kirkpatrick J; Döhner K; Perner F; Eifert T; Huber N; Arreba-Tutusaus P; Dolnik A; Assi SA; Nafria M; Jiang L; Dai YT; Chen Z; Chen SJ; Kellaway SG; Ptasinska A; Ng ES; Stanley EG; Elefanty AG; Buschbeck M; Bierhoff H; Brodt S; Matziolis G; Fischer KD; Hochhaus A; Chen CW; Heidenreich O; Mann M; Lane SW; Bullinger L; Ori A; von Eyss B; Bonifer C; Heidel FH
    Blood; 2022 Feb; 139(7):1080-1097. PubMed ID: 34695195
    [TBL] [Abstract][Full Text] [Related]  

  • 72. The global burden and attributable risk factor analysis of acute myeloid leukemia in 195 countries and territories from 1990 to 2017: estimates based on the global burden of disease study 2017.
    Yi M; Li A; Zhou L; Chu Q; Song Y; Wu K
    J Hematol Oncol; 2020 Jun; 13(1):72. PubMed ID: 32513227
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Phosphorylation-Dependent Differences in CXCR4-LASP1-AKT1 Interaction between Breast Cancer and Chronic Myeloid Leukemia.
    Butt E; Stempfle K; Lister L; Wolf F; Kraft M; Herrmann AB; Viciano CP; Weber C; Hochhaus A; Ernst T; Hoffmann C; Zernecke A; Frietsch JJ
    Cells; 2020 Feb; 9(2):. PubMed ID: 32075106
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Bioactivity and modulatory functions of
    Ikumawoyi VO; Awodele O; Agbaje EO; Alimba CG; Bakare AA; Akinloye O
    Toxicol Rep; 2019; 6():963-974. PubMed ID: 31673498
    [No Abstract]   [Full Text] [Related]  

  • 75. Acute myeloid leukaemia.
    Short NJ; Rytting ME; Cortes JE
    Lancet; 2018 Aug; 392(10147):593-606. PubMed ID: 30078459
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Anti-Vascular Endothelial Growth Factor Targeting by Curcumin and Thalidomide in Acute Myeloid Leukemia Cells.
    Salemi M; Mohammadi S; Ghavamzadeh A; Nikbakht M
    Asian Pac J Cancer Prev; 2017 Nov; 18(11):3055-3061. PubMed ID: 29172279
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Acute myeloid leukemia stem cell function is preserved in the absence of autophagy.
    Porter AH; Leveque-El Mouttie L; Vu T; Bruedigam C; Sutton J; Jacquelin S; Hill GR; MacDonald KPA; Lane SW
    Haematologica; 2017 Sep; 102(9):e344-e347. PubMed ID: 28550181
    [No Abstract]   [Full Text] [Related]  

  • 78. Understanding of leukemic stem cells and their clinical implications.
    Wang X; Huang S; Chen JL
    Mol Cancer; 2017 Jan; 16(1):2. PubMed ID: 28137304
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Stem Cell Modeling of Core Binding Factor Acute Myeloid Leukemia.
    Mosna F; Gottardi M
    Stem Cells Int; 2016; 2016():7625827. PubMed ID: 26880987
    [TBL] [Abstract][Full Text] [Related]  

  • 80.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.