These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 20026432)
41. Effects of salt and denaturant on structure of the amino terminal alpha-helical segment of an antibacterial peptide dermaseptin and its binding to model membranes. Thennarasu S; Nagaraj R Indian J Biochem Biophys; 2001 Jun; 38(3):142-8. PubMed ID: 11693375 [TBL] [Abstract][Full Text] [Related]
42. Membrane-disruptive abilities of beta-hairpin antimicrobial peptides correlate with conformation and activity: a 31P and 1H NMR study. Mani R; Waring AJ; Lehrer RI; Hong M Biochim Biophys Acta; 2005 Oct; 1716(1):11-8. PubMed ID: 16182236 [TBL] [Abstract][Full Text] [Related]
43. Solution structure and cell selectivity of piscidin 1 and its analogues. Lee SA; Kim YK; Lim SS; Zhu WL; Ko H; Shin SY; Hahm KS; Kim Y Biochemistry; 2007 Mar; 46(12):3653-63. PubMed ID: 17328560 [TBL] [Abstract][Full Text] [Related]
44. Solid-state nuclear magnetic resonance relaxation studies of the interaction mechanism of antimicrobial peptides with phospholipid bilayer membranes. Lu JX; Damodaran K; Blazyk J; Lorigan GA Biochemistry; 2005 Aug; 44(30):10208-17. PubMed ID: 16042398 [TBL] [Abstract][Full Text] [Related]
45. Trichoplaxin - a new membrane-active antimicrobial peptide from placozoan cDNA. Simunić J; Petrov D; Bouceba T; Kamech N; Benincasa M; Juretić D Biochim Biophys Acta; 2014 May; 1838(5):1430-8. PubMed ID: 24530880 [TBL] [Abstract][Full Text] [Related]
46. Conformational and membrane interaction studies of the antimicrobial peptide alyteserin-1c and its analogue [E4K]alyteserin-1c. Subasinghage AP; O'Flynn D; Conlon JM; Hewage CM Biochim Biophys Acta; 2011 Aug; 1808(8):1975-84. PubMed ID: 21565166 [TBL] [Abstract][Full Text] [Related]
47. Naturally processed dermcidin-derived peptides do not permeabilize bacterial membranes and kill microorganisms irrespective of their charge. Steffen H; Rieg S; Wiedemann I; Kalbacher H; Deeg M; Sahl HG; Peschel A; Götz F; Garbe C; Schittek B Antimicrob Agents Chemother; 2006 Aug; 50(8):2608-20. PubMed ID: 16870749 [TBL] [Abstract][Full Text] [Related]
48. The role of the central L- or D-Pro residue on structure and mode of action of a cell-selective alpha-helical IsCT-derived antimicrobial peptide. Lim SS; Kim Y; Park Y; Kim JI; Park IS; Hahm KS; Shin SY Biochem Biophys Res Commun; 2005 Sep; 334(4):1329-35. PubMed ID: 16040002 [TBL] [Abstract][Full Text] [Related]
49. Effects of acyl versus aminoacyl conjugation on the properties of antimicrobial peptides. Radzishevsky IS; Rotem S; Zaknoon F; Gaidukov L; Dagan A; Mor A Antimicrob Agents Chemother; 2005 Jun; 49(6):2412-20. PubMed ID: 15917541 [TBL] [Abstract][Full Text] [Related]
50. Effect of antimicrobial peptides from Australian tree frogs on anionic phospholipid membranes. Gehman JD; Luc F; Hall K; Lee TH; Boland MP; Pukala TL; Bowie JH; Aguilar MI; Separovic F Biochemistry; 2008 Aug; 47(33):8557-65. PubMed ID: 18652483 [TBL] [Abstract][Full Text] [Related]
51. Membrane binding and structure of de novo designed alpha-helical cationic coiled-coil-forming peptides. Vagt T; Zschörnig O; Huster D; Koksch B Chemphyschem; 2006 Jun; 7(6):1361-71. PubMed ID: 16680794 [TBL] [Abstract][Full Text] [Related]
53. Structure-activity relationship of an antibacterial peptide, maculatin 1.1, from the skin glands of the tree frog, Litoria genimaculata. Niidome T; Kobayashi K; Arakawa H; Hatakeyama T; Aoyagi H J Pept Sci; 2004 Jul; 10(7):414-22. PubMed ID: 15298176 [TBL] [Abstract][Full Text] [Related]
54. Action mechanism of tachyplesin I and effects of PEGylation. Imura Y; Nishida M; Ogawa Y; Takakura Y; Matsuzaki K Biochim Biophys Acta; 2007 May; 1768(5):1160-9. PubMed ID: 17320042 [TBL] [Abstract][Full Text] [Related]
55. Insertion mode of a novel anionic antimicrobial peptide MDpep5 (Val-Glu-Ser-Trp-Val) from Chinese traditional edible larvae of housefly and its effect on surface potential of bacterial membrane. Tang YL; Shi YH; Zhao W; Hao G; Le GW J Pharm Biomed Anal; 2008 Dec; 48(4):1187-94. PubMed ID: 18926657 [TBL] [Abstract][Full Text] [Related]
56. Deciphering a mechanism of membrane permeabilization by α-hordothionin peptide. Oard SV Biochim Biophys Acta; 2011 Jun; 1808(6):1737-45. PubMed ID: 21315063 [TBL] [Abstract][Full Text] [Related]
57. Solution structure of a novel tryptophan-rich peptide with bidirectional antimicrobial activity. Wei SY; Wu JM; Kuo YY; Chen HL; Yip BS; Tzeng SR; Cheng JW J Bacteriol; 2006 Jan; 188(1):328-34. PubMed ID: 16352849 [TBL] [Abstract][Full Text] [Related]
58. Helical structure of dermaseptin B2 in a membrane-mimetic environment. Lequin O; Bruston F; Convert O; Chassaing G; Nicolas P Biochemistry; 2003 Sep; 42(34):10311-23. PubMed ID: 12939161 [TBL] [Abstract][Full Text] [Related]
59. Design of imperfectly amphipathic α-helical antimicrobial peptides with enhanced cell selectivity. Zhu X; Dong N; Wang Z; Ma Z; Zhang L; Ma Q; Shan A Acta Biomater; 2014 Jan; 10(1):244-57. PubMed ID: 24021230 [TBL] [Abstract][Full Text] [Related]
60. Dual mechanism of bacterial lethality for a cationic sequence-random copolymer that mimics host-defense antimicrobial peptides. Epand RF; Mowery BP; Lee SE; Stahl SS; Lehrer RI; Gellman SH; Epand RM J Mol Biol; 2008 May; 379(1):38-50. PubMed ID: 18440552 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]