BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 20026480)

  • 1. The increase in the number of subunits in eukaryotic RNA polymerase III relative to RNA polymerase II is due to the permanent recruitment of general transcription factors.
    Carter R; Drouin G
    Mol Biol Evol; 2010 May; 27(5):1035-43. PubMed ID: 20026480
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Archaeal TFEα/β is a hybrid of TFIIE and the RNA polymerase III subcomplex hRPC62/39.
    Blombach F; Salvadori E; Fouqueau T; Yan J; Reimann J; Sheppard C; Smollett KL; Albers SV; Kay CW; Thalassinos K; Werner F
    Elife; 2015 Jun; 4():e08378. PubMed ID: 26067235
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Amino acid substitutions in yeast TFIIF confer upstream shifts in transcription initiation and altered interaction with RNA polymerase II.
    Ghazy MA; Brodie SA; Ammerman ML; Ziegler LM; Ponticelli AS
    Mol Cell Biol; 2004 Dec; 24(24):10975-85. PubMed ID: 15572698
    [TBL] [Abstract][Full Text] [Related]  

  • 4. RPAP1, a novel human RNA polymerase II-associated protein affinity purified with recombinant wild-type and mutated polymerase subunits.
    Jeronimo C; Langelier MF; Zeghouf M; Cojocaru M; Bergeron D; Baali D; Forget D; Mnaimneh S; Davierwala AP; Pootoolal J; Chandy M; Canadien V; Beattie BK; Richards DP; Workman JL; Hughes TR; Greenblatt J; Coulombe B
    Mol Cell Biol; 2004 Aug; 24(16):7043-58. PubMed ID: 15282305
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolution of viral DNA-dependent RNA polymerases.
    Sonntag KC; Darai G
    Virus Genes; 1995; 11(2-3):271-84. PubMed ID: 8828152
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Insights into transcription initiation and termination from the electron microscopy structure of yeast RNA polymerase III.
    Fernández-Tornero C; Böttcher B; Riva M; Carles C; Steuerwald U; Ruigrok RW; Sentenac A; Müller CW; Schoehn G
    Mol Cell; 2007 Mar; 25(6):813-23. PubMed ID: 17386259
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural differentiation of the three eukaryotic RNA polymerases.
    Carter R; Drouin G
    Genomics; 2009 Dec; 94(6):388-96. PubMed ID: 19720141
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetics of eukaryotic RNA polymerases I, II, and III.
    Archambault J; Friesen JD
    Microbiol Rev; 1993 Sep; 57(3):703-24. PubMed ID: 8246845
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mutational studies of archaeal RNA polymerase and analysis of hybrid RNA polymerases.
    Thomm M; Reich C; Grünberg S; Naji S
    Biochem Soc Trans; 2009 Feb; 37(Pt 1):18-22. PubMed ID: 19143595
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The transcript cleavage factor paralogue TFS4 is a potent RNA polymerase inhibitor.
    Fouqueau T; Blombach F; Hartman R; Cheung ACM; Young MJ; Werner F
    Nat Commun; 2017 Dec; 8(1):1914. PubMed ID: 29203770
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Old and New Testaments of gene regulation. Evolution of multi-subunit RNA polymerases and co-evolution of eukaryote complexity with the RNAP II CTD.
    Burton ZF
    Transcription; 2014; 5(3):e28674. PubMed ID: 25764332
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rpo26p, a subunit common to yeast RNA polymerases, is essential for the assembly of RNA polymerases I and II and for the stability of the largest subunits of these enzymes.
    Nouraini S; Archambault J; Friesen JD
    Mol Cell Biol; 1996 Nov; 16(11):5985-96. PubMed ID: 8887628
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Widespread use of TATA elements in the core promoters for RNA polymerases III, II, and I in fission yeast.
    Hamada M; Huang Y; Lowe TM; Maraia RJ
    Mol Cell Biol; 2001 Oct; 21(20):6870-81. PubMed ID: 11564871
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mutational analysis of human RNA polymerase II subunit 5 (RPB5): the residues critical for interactions with TFIIF subunit RAP30 and hepatitis B virus X protein.
    Le TT; Zhang S; Hayashi N; Yasukawa M; Delgermaa L; Murakami S
    J Biochem; 2005 Sep; 138(3):215-24. PubMed ID: 16169872
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural evolution of multisubunit RNA polymerases.
    Werner F
    Trends Microbiol; 2008 Jun; 16(6):247-50. PubMed ID: 18468900
    [TBL] [Abstract][Full Text] [Related]  

  • 16. RNA polymerase I contains a TFIIF-related DNA-binding subcomplex.
    Geiger SR; Lorenzen K; Schreieck A; Hanecker P; Kostrewa D; Heck AJ; Cramer P
    Mol Cell; 2010 Aug; 39(4):583-94. PubMed ID: 20797630
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure of an RNA polymerase II preinitiation complex.
    Murakami K; Tsai KL; Kalisman N; Bushnell DA; Asturias FJ; Kornberg RD
    Proc Natl Acad Sci U S A; 2015 Nov; 112(44):13543-8. PubMed ID: 26483468
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of Eukaryotic RNAPs Activities by Phosphorylation.
    González-Jiménez A; Campos A; Navarro F; Clemente-Blanco A; Calvo O
    Front Mol Biosci; 2021; 8():681865. PubMed ID: 34250017
    [TBL] [Abstract][Full Text] [Related]  

  • 19. RNA polymerase II/TFIIF structure and conserved organization of the initiation complex.
    Chung WH; Craighead JL; Chang WH; Ezeokonkwo C; Bareket-Samish A; Kornberg RD; Asturias FJ
    Mol Cell; 2003 Oct; 12(4):1003-13. PubMed ID: 14580350
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interactions of the HIV-1 Tat and RAP74 proteins with the RNA polymerase II CTD phosphatase FCP1.
    Abbott KL; Archambault J; Xiao H; Nguyen BD; Roeder RG; Greenblatt J; Omichinski JG; Legault P
    Biochemistry; 2005 Mar; 44(8):2716-31. PubMed ID: 15723517
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.