These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
81 related articles for article (PubMed ID: 200269)
1. Conformational changes in yeast tRNATyr revealed by EPR spectra of spin-labelled N6-(delta2-isopentenyl)-adenosine residue. Weygand-Duraŝević I; Nöthig-Laslo V; Herak JN; Kućan Z Biochim Biophys Acta; 1977 Dec; 479(3):332-44. PubMed ID: 200269 [TBL] [Abstract][Full Text] [Related]
2. Binding of spermine to tRNATyr stabilizes the conformation of the anticodon loop and creates strong binding sites for divalent cations. Nöthig-Laslo V; Weygand-Durasević I; Zivković T; Kućan Z Eur J Biochem; 1981 Jul; 117(2):263-7. PubMed ID: 6268406 [TBL] [Abstract][Full Text] [Related]
3. Involvement of the 3' side of the anticodon loop of yeast tRNATyr in messenger-free binding to ribosomes. An electron-spin resonance study. Weygand-Durasević I; Nöthig-Laslo V; Kućan Z Eur J Biochem; 1984 Mar; 139(3):541-5. PubMed ID: 6321181 [TBL] [Abstract][Full Text] [Related]
4. Kinetics and motional dynamics of spin-labeled yeast iso-1-cytochrome c: 1. Stopped-flow electron paramagnetic resonance as a probe for protein folding/unfolding of the C-terminal helix spin-labeled at cysteine 102. Qu K; Vaughn JL; Sienkiewicz A; Scholes CP; Fetrow JS Biochemistry; 1997 Mar; 36(10):2884-97. PubMed ID: 9062118 [TBL] [Abstract][Full Text] [Related]
5. A spin label study of the thermal unfolding of secondary and tertiary structure in E. colic transfer RNAs. Caron M; Dugas H Nucleic Acids Res; 1976 Jan; 3(1):35-47. PubMed ID: 175354 [TBL] [Abstract][Full Text] [Related]
6. Conformational properties of streptokinase--secondary structure and localization of aromatic amino acids. Welfle H; Misselwitz R; Fabian H; Damerau W; Hoelzer W; Gerlach D; Kalnin NN; Venyaminov SY Int J Biol Macromol; 1992 Feb; 14(1):9-18. PubMed ID: 1317718 [TBL] [Abstract][Full Text] [Related]
7. Electron paramagnetic resonance studies on spin-labelling of pepsin: effects of temperature, pH and urea on its conformation. Aoshima H; Naito A; Hatano H Int J Pept Protein Res; 1976; 8(2):131-9. PubMed ID: 5380 [TBL] [Abstract][Full Text] [Related]
8. Natural-abundance carbon-13 Fourier-transform nuclear magnetic resonance spectra and spin lattice relaxation times of unfractionated yeast transfer-FNA. Komoroski RA; Allerhand A Proc Natl Acad Sci U S A; 1972 Jul; 69(7):1804-8. PubMed ID: 4558659 [TBL] [Abstract][Full Text] [Related]
9. 1H nuclear magnetic resonance of modified bases of valine transfer ribonucleic acid (Escherichia coli). A direct monitor of sequential thermal unfolding. Kastrup RV; Schmidt PG Biochemistry; 1975 Aug; 14(16):3612-8. PubMed ID: 1100098 [TBL] [Abstract][Full Text] [Related]
10. [Dynamic mobility of the histidine-containing domain of spin-labeled lysozyme]. Artiukh RI; Kachalova GS; Samarianov BA; Timofeev VP Mol Biol (Mosk); 1995; 29(1):149-58. PubMed ID: 7723755 [TBL] [Abstract][Full Text] [Related]
11. Thermal stability of F-actin as studied by spin labelling. Belágyi J; Damerau W; Pallai G Acta Biochim Biophys Acad Sci Hung; 1978; 13(1-2):85-90. PubMed ID: 224635 [TBL] [Abstract][Full Text] [Related]
12. Conformational heterogeneity and spin-labeled -SH groups: pulsed EPR of Na,K-ATPase. Guzzi R; Bartucci R; Sportelli L; Esmann M; Marsh D Biochemistry; 2009 Sep; 48(35):8343-54. PubMed ID: 19642639 [TBL] [Abstract][Full Text] [Related]
13. Dynamical transition in molecular glasses and proteins observed by spin relaxation of nitroxide spin probes and labels. Golysheva EA; Shevelev GY; Dzuba SA J Chem Phys; 2017 Aug; 147(6):064501. PubMed ID: 28810753 [TBL] [Abstract][Full Text] [Related]
14. Enzymatic synthesis of chimeric tRNAs with unusual numbers of base pairs in the anticodon stem; their structure and properties. Nishikawa K Nucleic Acids Symp Ser; 1986; (17):167-70. PubMed ID: 3645546 [TBL] [Abstract][Full Text] [Related]
15. Molecular motion and order in oriented lipid multibilayer membranes evaluated by simulations of spin label ESR spectra. Effects of temperature, cholesterol and magnetic field. Shimoyama Y; Eriksson LE; Ehrenberg A Biochim Biophys Acta; 1978 Apr; 508(2):213-35. PubMed ID: 205243 [TBL] [Abstract][Full Text] [Related]
16. Poly(U)-dependent polyphenylalanine and polytyrosine synthesis in vitro by a tRNATyr variant with an enzymatically altered anticodon, G-A-A. Nishikawa K; Uritani M; Miyazaki M; Takemura S Nucleic Acids Symp Ser; 1984; (15):125-8. PubMed ID: 6570012 [TBL] [Abstract][Full Text] [Related]
17. Transfer RNA recognition by the Escherichia coli delta2-isopentenyl-pyrophosphate:tRNA delta2-isopentenyl transferase: dependence on the anticodon arm structure. Motorin Y; Bec G; Tewari R; Grosjean H RNA; 1997 Jul; 3(7):721-33. PubMed ID: 9214656 [TBL] [Abstract][Full Text] [Related]
18. Spin label ESR and 31P-NMR studies of the cubic and inverted hexagonal phases of dimyristoylphosphatidylcholine/myristic acid (1:2, mol/mol) mixtures. Rama Krishna YV; Marsh D Biochim Biophys Acta; 1990 May; 1024(1):89-94. PubMed ID: 2159807 [TBL] [Abstract][Full Text] [Related]
19. [Spectral division of conformational states of spin-labeled tRNA Phe from Escherichia coli]. Isaev-Ivanov VV; Isaeva-Ivanova LS; Kleĭner AR; Odintsov VB; Sidorov OIu Mol Biol (Mosk); 1983; 17(2):362-72. PubMed ID: 6304493 [TBL] [Abstract][Full Text] [Related]
20. Temperature jump relaxation studies on the interactions between transfer RNAs with complementary anticodons. The effect of modified bases adjacent to the anticodon triplet. Houssier C; Grosjean H J Biomol Struct Dyn; 1985 Oct; 3(2):387-408. PubMed ID: 3917029 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]