BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 20027232)

  • 1. Steady-state brain glucose transport kinetics re-evaluated with a four-state conformational model.
    Duarte JM; Morgenthaler FD; Lei H; Poitry-Yamate C; Gruetter R
    Front Neuroenergetics; 2009; 1():6. PubMed ID: 20027232
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of cerebral glucose dynamics in vivo with a four-state conformational model of transport at the blood-brain barrier.
    Duarte JM; Gruetter R
    J Neurochem; 2012 May; 121(3):396-406. PubMed ID: 22324542
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simultaneous measurement of glucose transport and utilization in the human brain.
    Shestov AA; Emir UE; Kumar A; Henry PG; Seaquist ER; Öz G
    Am J Physiol Endocrinol Metab; 2011 Nov; 301(5):E1040-9. PubMed ID: 21791622
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simultaneous measurement of glucose blood-brain transport constants and metabolic rate in rat brain using in-vivo 1H MRS.
    Du F; Zhang Y; Zhu XH; Chen W
    J Cereb Blood Flow Metab; 2012 Sep; 32(9):1778-87. PubMed ID: 22714049
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differentiation of glucose transport in human brain gray and white matter.
    de Graaf RA; Pan JW; Telang F; Lee JH; Brown P; Novotny EJ; Hetherington HP; Rothman DL
    J Cereb Blood Flow Metab; 2001 May; 21(5):483-92. PubMed ID: 11333358
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Steady-state cerebral glucose concentrations and transport in the human brain.
    Gruetter R; Ugurbil K; Seaquist ER
    J Neurochem; 1998 Jan; 70(1):397-408. PubMed ID: 9422387
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A quantitative overview of glucose dynamics in the gliovascular unit.
    Barros LF; Bittner CX; Loaiza A; Porras OH
    Glia; 2007 Sep; 55(12):1222-1237. PubMed ID: 17659523
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cerebral glucose transport and oxygen consumption in sheep and rabbits.
    Pappenheimer JR; Setchell BP
    J Physiol; 1973 Sep; 233(3):529-51. PubMed ID: 4754872
    [TBL] [Abstract][Full Text] [Related]  

  • 9. THE NATURE AND CONTROL OF REACTIONS IN BIOLUMINESCENCE : WITH SPECIAL REFERENCE TO THE MECHANISM OF REVERSIBLE AND IRREVERSIBLE INHIBITIONS BY HYDROGEN AND HYDROXYL IONS, TEMPERATURE, PRESSURE, ALCOHOL, URETHANE, AND SULFANILAMIDE IN BACTERIA.
    Johnson FH; Eyring H; Steblay R; Chaplin H; Huber C; Gherardi G
    J Gen Physiol; 1945 May; 28(5):463-537. PubMed ID: 19873433
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 1H NMR studies of glucose transport in the human brain.
    Gruetter R; Novotny EJ; Boulware SD; Rothman DL; Shulman RG
    J Cereb Blood Flow Metab; 1996 May; 16(3):427-38. PubMed ID: 8621747
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantification of cerebral glucose metabolic rate in mice using 18F-FDG and small-animal PET.
    Yu AS; Lin HD; Huang SC; Phelps ME; Wu HM
    J Nucl Med; 2009 Jun; 50(6):966-73. PubMed ID: 19443595
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vivo measurements of brain glucose transport using the reversible Michaelis-Menten model and simultaneous measurements of cerebral blood flow changes during hypoglycemia.
    Choi IY; Lee SP; Kim SG; Gruetter R
    J Cereb Blood Flow Metab; 2001 Jun; 21(6):653-63. PubMed ID: 11488534
    [TBL] [Abstract][Full Text] [Related]  

  • 13. NMR determination of intracerebral glucose concentration and transport kinetics in rat brain.
    Mason GF; Behar KL; Rothman DL; Shulman RG
    J Cereb Blood Flow Metab; 1992 May; 12(3):448-55. PubMed ID: 1569138
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Blood-brain barrier transport and brain metabolism of glucose during acute hyperglycemia in humans.
    Hasselbalch SG; Knudsen GM; Capaldo B; Postiglione A; Paulson OB
    J Clin Endocrinol Metab; 2001 May; 86(5):1986-90. PubMed ID: 11344196
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibition of glucose transport and direct interactions with type 1 facilitative glucose transporter (GLUT-1) by etomidate, ketamine, and propofol: a comparison with barbiturates.
    Stephenson KN; Croxen RL; El-Barbary A; Fenstermacher JD; Haspel HC
    Biochem Pharmacol; 2000 Sep; 60(5):651-9. PubMed ID: 10927023
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid steady-state analysis of blood-brain glucose transfer in rat.
    Gjedde A
    Acta Physiol Scand; 1980 Apr; 108(4):331-9. PubMed ID: 6998256
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Barbiturate inhibition of GLUT-1 mediated hexose transport in human erythrocytes exhibits substrate dependence for equilibrium exchange but not unidirectional sugar flux.
    el-Barbary A; Fenstermacher JD; Haspel HC
    Biochemistry; 1996 Dec; 35(48):15222-7. PubMed ID: 8952470
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling the dependence of hexose distribution volumes in brain on plasma glucose concentration: implications for estimation of the local 2-deoxyglucose lumped constant.
    Holden JE; Mori K; Dienel GA; Cruz NF; Nelson T; Sokoloff L
    J Cereb Blood Flow Metab; 1991 Mar; 11(2):171-82. PubMed ID: 1997495
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetics of blood-brain transport of hexoses.
    Pardridge WM; Oldendorf WH
    Biochim Biophys Acta; 1975 Mar; 382(3):377-92. PubMed ID: 1125240
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conformational dynamics of hSGLT1 during Na+/glucose cotransport.
    Loo DD; Hirayama BA; Karakossian MH; Meinild AK; Wright EM
    J Gen Physiol; 2006 Dec; 128(6):701-20. PubMed ID: 17130520
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.