BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 20027298)

  • 1. rBPI(21) promotes lipopolysaccharide aggregation and exerts its antimicrobial effects by (hemi)fusion of PG-containing membranes.
    Domingues MM; Castanho MA; Santos NC
    PLoS One; 2009 Dec; 4(12):e8385. PubMed ID: 20027298
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biophysical characterization of polymyxin B interaction with LPS aggregates and membrane model systems.
    Domingues MM; Inácio RG; Raimundo JM; Martins M; Castanho MA; Santos NC
    Biopolymers; 2012; 98(4):338-44. PubMed ID: 23193598
    [TBL] [Abstract][Full Text] [Related]  

  • 3. rBPI21 interacts with negative membranes endothermically promoting the formation of rigid multilamellar structures.
    Domingues MM; Bianconi ML; Barbosa LR; Santiago PS; Tabak M; Castanho MA; Itri R; Santos NC
    Biochim Biophys Acta; 2013 Nov; 1828(11):2419-27. PubMed ID: 23792068
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fold-unfold transitions in the selectivity and mechanism of action of the N-terminal fragment of the bactericidal/permeability-increasing protein (rBPI(21)).
    Domingues MM; Lopes SC; Santos NC; Quintas A; Castanho MA
    Biophys J; 2009 Feb; 96(3):987-96. PubMed ID: 19186136
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of lipopolysaccharide (LPS) chain length on interactions of bactericidal/permeability-increasing protein and its bioactive 23-kilodalton NH2-terminal fragment with isolated LPS and intact Proteus mirabilis and Escherichia coli.
    Capodici C; Chen S; Sidorczyk Z; Elsbach P; Weiss J
    Infect Immun; 1994 Jan; 62(1):259-65. PubMed ID: 8262637
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antimicrobial peptide rBPI21: a translational overview from bench to clinical studies.
    Domingues MM; Santos NC; Castanho MA
    Curr Protein Pept Sci; 2012 Nov; 13(7):611-9. PubMed ID: 23116442
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cyclic antimicrobial R-, W-rich peptides: the role of peptide structure and E. coli outer and inner membranes in activity and the mode of action.
    Junkes C; Harvey RD; Bruce KD; Dölling R; Bagheri M; Dathe M
    Eur Biophys J; 2011 Apr; 40(4):515-28. PubMed ID: 21286704
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Revealing the Mode of Action of Halictine Antimicrobial Peptides: A Comprehensive Study with Model Membranes.
    Domingues TM; Perez KR; Riske KA
    Langmuir; 2020 May; 36(19):5145-5155. PubMed ID: 32336099
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancement of neonatal innate defense: effects of adding an N-terminal recombinant fragment of bactericidal/permeability-increasing protein on growth and tumor necrosis factor-inducing activity of gram-negative bacteria tested in neonatal cord blood ex vivo.
    Levy O; Sisson RB; Kenyon J; Eichenwald E; Macone AB; Goldmann D
    Infect Immun; 2000 Sep; 68(9):5120-5. PubMed ID: 10948134
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The importance of bacterial membrane composition in the structure and function of aurein 2.2 and selected variants.
    Cheng JT; Hale JD; Elliott M; Hancock RE; Straus SK
    Biochim Biophys Acta; 2011 Mar; 1808(3):622-33. PubMed ID: 21144817
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The bactericidal/permeability increasing protein of neutrophils is a potent antibacterial and anti-endotoxin agent in vitro and in vivo.
    Elsbach P; Weiss J; Doerfler M; Shu C; Kohn F; Ammons WS; Kung AH; Meszaros KK; Parent JB
    Prog Clin Biol Res; 1994; 388():41-51. PubMed ID: 7831373
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A 2H solid-state NMR study of lipid clustering by cationic antimicrobial and cell-penetrating peptides in model bacterial membranes.
    Kwon B; Waring AJ; Hong M
    Biophys J; 2013 Nov; 105(10):2333-42. PubMed ID: 24268145
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of membrane composition on antimicrobial peptides aurein 2.2 and 2.3 from Australian southern bell frogs.
    Cheng JT; Hale JD; Elliot M; Hancock RE; Straus SK
    Biophys J; 2009 Jan; 96(2):552-65. PubMed ID: 19167304
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanisms of action of the bactericidal/permeability-increasing protein BPI on endotoxin and phospholipid monolayers and aggregates.
    Wiese A; Brandenburg K; Lindner B; Schromm AB; Carroll SF; Rietschel ET; Seydel U
    Biochemistry; 1997 Aug; 36(33):10301-10. PubMed ID: 9254629
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bactericidal permeability-increasing protein in host defence against gram-negative bacteria and endotoxin.
    Elsbach P
    Ciba Found Symp; 1994; 186():176-87; discussion 187-9. PubMed ID: 7768151
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interactions between human defensins and lipid bilayers: evidence for formation of multimeric pores.
    Wimley WC; Selsted ME; White SH
    Protein Sci; 1994 Sep; 3(9):1362-73. PubMed ID: 7833799
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Log reduction of multidrug-resistant Gram-negative bacteria by the neutrophil-derived recombinant bactericidal/permeability-increasing protein.
    Weitz A; Spotnitz R; Collins J; Ovadia S; Iovine NM
    Int J Antimicrob Agents; 2013 Dec; 42(6):571-4. PubMed ID: 24189329
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bactericidal/permeability-increasing protein protects vascular endothelial cells from lipopolysaccharide-induced activation and injury.
    Arditi M; Zhou J; Huang SH; Luckett PM; Marra MN; Kim KS
    Infect Immun; 1994 Sep; 62(9):3930-6. PubMed ID: 8063410
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A peptide derived from human bactericidal/permeability-increasing protein (BPI) exerts bactericidal activity against Gram-negative bacterial isolates obtained from clinical cases of bovine mastitis.
    Chockalingam A; McKinney CE; Rinaldi M; Zarlenga DS; Bannerman DD
    Vet Microbiol; 2007 Nov; 125(1-2):80-90. PubMed ID: 17560054
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermodynamics of the interactions of tryptophan-rich cathelicidin antimicrobial peptides with model and natural membranes.
    Andrushchenko VV; Aarabi MH; Nguyen LT; Prenner EJ; Vogel HJ
    Biochim Biophys Acta; 2008 Apr; 1778(4):1004-14. PubMed ID: 18222168
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.