These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
269 related articles for article (PubMed ID: 20027301)
1. Dissecting the role of critical residues and substrate preference of a Fatty Acyl-CoA Synthetase (FadD13) of Mycobacterium tuberculosis. Khare G; Gupta V; Gupta RK; Gupta R; Bhat R; Tyagi AK PLoS One; 2009 Dec; 4(12):e8387. PubMed ID: 20027301 [TBL] [Abstract][Full Text] [Related]
2. Molecular modeling studies of Fatty acyl-CoA synthetase (FadD13) from Mycobacterium tuberculosis--a potential target for the development of antitubercular drugs. Jatana N; Jangid S; Khare G; Tyagi AK; Latha N J Mol Model; 2011 Feb; 17(2):301-13. PubMed ID: 20454815 [TBL] [Abstract][Full Text] [Related]
3. The Mycobacterium tuberculosis very-long-chain fatty acyl-CoA synthetase: structural basis for housing lipid substrates longer than the enzyme. Andersson CS; Lundgren CA; Magnúsdóttir A; Ge C; Wieslander A; Martinez Molina D; Högbom M Structure; 2012 Jun; 20(6):1062-70. PubMed ID: 22560731 [TBL] [Abstract][Full Text] [Related]
4. Solution and Membrane Interaction Dynamics of Lundgren CAK; Lerche M; Norling C; Högbom M Biochemistry; 2021 May; 60(19):1520-1532. PubMed ID: 33913324 [TBL] [Abstract][Full Text] [Related]
5. An acyl-CoA synthetase in Mycobacterium tuberculosis involved in triacylglycerol accumulation during dormancy. Daniel J; Sirakova T; Kolattukudy P PLoS One; 2014; 9(12):e114877. PubMed ID: 25490545 [TBL] [Abstract][Full Text] [Related]
6. Mutational analysis of a fatty acyl-coenzyme A synthetase signature motif identifies seven amino acid residues that modulate fatty acid substrate specificity. Black PN; Zhang Q; Weimar JD; DiRusso CC J Biol Chem; 1997 Feb; 272(8):4896-903. PubMed ID: 9030548 [TBL] [Abstract][Full Text] [Related]
7. Molecular basis of the functional divergence of fatty acyl-AMP ligase biosynthetic enzymes of Mycobacterium tuberculosis. Goyal A; Verma P; Anandhakrishnan M; Gokhale RS; Sankaranarayanan R J Mol Biol; 2012 Feb; 416(2):221-38. PubMed ID: 22206988 [TBL] [Abstract][Full Text] [Related]
8. Biochemical characterization of acyl carrier protein (AcpM) and malonyl-CoA:AcpM transacylase (mtFabD), two major components of Mycobacterium tuberculosis fatty acid synthase II. Kremer L; Nampoothiri KM; Lesjean S; Dover LG; Graham S; Betts J; Brennan PJ; Minnikin DE; Locht C; Besra GS J Biol Chem; 2001 Jul; 276(30):27967-74. PubMed ID: 11373295 [TBL] [Abstract][Full Text] [Related]
9. Characterization of an archaeal medium-chain acyl coenzyme A synthetase from Methanosarcina acetivorans. Meng Y; Ingram-Smith C; Cooper LL; Smith KS J Bacteriol; 2010 Nov; 192(22):5982-90. PubMed ID: 20851904 [TBL] [Abstract][Full Text] [Related]
10. Functional evaluation of residues in the herbicide-binding site of Mycobacterium tuberculosis acetohydroxyacid synthase by site-directed mutagenesis. Jung IP; Cho JH; Koo BS; Yoon MY Enzyme Microb Technol; 2015 Oct; 78():18-26. PubMed ID: 26215340 [TBL] [Abstract][Full Text] [Related]
11. Crystal structure of the thioesterification conformation of Chen Y; Li TL; Lin X; Li X; Li XD; Guo Z J Biol Chem; 2017 Jul; 292(29):12296-12310. PubMed ID: 28559280 [No Abstract] [Full Text] [Related]
12. Affinity labeling fatty acyl-CoA synthetase with 9-p-azidophenoxy nonanoic acid and the identification of the fatty acid-binding site. Black PN; DiRusso CC; Sherin D; MacColl R; Knudsen J; Weimar JD J Biol Chem; 2000 Dec; 275(49):38547-53. PubMed ID: 10995760 [TBL] [Abstract][Full Text] [Related]
13. Fatty acylCoA synthetase FadD13 regulates proinflammatory cytokine secretion dependent on the NF-κB signalling pathway by binding to eEF1A1. Wei S; Wang D; Li H; Bi L; Deng J; Zhu G; Zhang J; Li C; Li M; Fang Y; Zhang G; Chen J; Tao S; Zhang XE Cell Microbiol; 2019 Dec; 21(12):e13090. PubMed ID: 31364251 [TBL] [Abstract][Full Text] [Related]
14. Mycobacteria Encode Active and Inactive Classes of TesB Fatty-Acyl CoA Thioesterases Revealed through Structural and Functional Analysis. Swarbrick CM; Bythrow GV; Aragao D; Germain GA; Quadri LE; Forwood JK Biochemistry; 2017 Mar; 56(10):1460-1472. PubMed ID: 28156101 [TBL] [Abstract][Full Text] [Related]
15. Deciphering the genes involved in pathogenesis of Mycobacterium tuberculosis. Singh R; Singh A; Tyagi AK Tuberculosis (Edinb); 2005; 85(5-6):325-35. PubMed ID: 16256440 [TBL] [Abstract][Full Text] [Related]
16. Biochemical and structural characterization of an essential acyl coenzyme A carboxylase from Mycobacterium tuberculosis. Gago G; Kurth D; Diacovich L; Tsai SC; Gramajo H J Bacteriol; 2006 Jan; 188(2):477-86. PubMed ID: 16385038 [TBL] [Abstract][Full Text] [Related]
17. Requirement of the mymA operon for appropriate cell wall ultrastructure and persistence of Mycobacterium tuberculosis in the spleens of guinea pigs. Singh A; Gupta R; Vishwakarma RA; Narayanan PR; Paramasivan CN; Ramanathan VD; Tyagi AK J Bacteriol; 2005 Jun; 187(12):4173-86. PubMed ID: 15937179 [TBL] [Abstract][Full Text] [Related]
18. Redesign of substrate specificity and identification of the aminoglycoside binding residues of Eis from Mycobacterium tuberculosis. Jennings BC; Labby KJ; Green KD; Garneau-Tsodikova S Biochemistry; 2013 Jul; 52(30):5125-32. PubMed ID: 23837529 [TBL] [Abstract][Full Text] [Related]
19. Structure-based inhibitor design of AccD5, an essential acyl-CoA carboxylase carboxyltransferase domain of Mycobacterium tuberculosis. Lin TW; Melgar MM; Kurth D; Swamidass SJ; Purdon J; Tseng T; Gago G; Baldi P; Gramajo H; Tsai SC Proc Natl Acad Sci U S A; 2006 Feb; 103(9):3072-7. PubMed ID: 16492739 [TBL] [Abstract][Full Text] [Related]
20. Mycobacterium tuberculosis phosphoribosylpyrophosphate synthetase: biochemical features of a crucial enzyme for mycobacterial cell wall biosynthesis. Lucarelli AP; Buroni S; Pasca MR; Rizzi M; Cavagnino A; Valentini G; Riccardi G; Chiarelli LR PLoS One; 2010 Nov; 5(11):e15494. PubMed ID: 21085589 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]