These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
254 related articles for article (PubMed ID: 20027608)
1. Brief communication: Dynamic plantar pressure distribution during locomotion in Japanese macaques (Macaca fuscata). Hirasaki E; Higurashi Y; Kumakura H Am J Phys Anthropol; 2010 May; 142(1):149-56. PubMed ID: 20027608 [TBL] [Abstract][Full Text] [Related]
2. Dynamic plantar pressure distribution during terrestrial locomotion of bonobos (Pan paniscus). Vereecke E; D'Août K; De Clercq D; Van Elsacker L; Aerts P Am J Phys Anthropol; 2003 Apr; 120(4):373-83. PubMed ID: 12627532 [TBL] [Abstract][Full Text] [Related]
3. Functional analysis of the gibbon foot during terrestrial bipedal walking: plantar pressure distributions and three-dimensional ground reaction forces. Vereecke E; D'Août K; Van Elsacker L; De Clercq D; Aerts P Am J Phys Anthropol; 2005 Nov; 128(3):659-69. PubMed ID: 15861422 [TBL] [Abstract][Full Text] [Related]
4. Energy expenditure of bipedal walking is higher than that of quadrupedal walking in Japanese macaques. Nakatsukasa M; Hirasaki E; Ogihara N Am J Phys Anthropol; 2006 Sep; 131(1):33-7. PubMed ID: 16485295 [TBL] [Abstract][Full Text] [Related]
5. Do highly trained monkeys walk like humans? A kinematic study of bipedal locomotion in bipedally trained Japanese macaques. Hirasaki E; Ogihara N; Hamada Y; Kumakura H; Nakatsukasa M J Hum Evol; 2004 Jun; 46(6):739-50. PubMed ID: 15183673 [TBL] [Abstract][Full Text] [Related]
6. Ground-reaction-force profiles of bipedal walking in bipedally trained Japanese monkeys. Ogihara N; Hirasaki E; Kumakura H; Nakatsukasa M J Hum Evol; 2007 Sep; 53(3):302-8. PubMed ID: 17574651 [TBL] [Abstract][Full Text] [Related]
7. Energetic costs of bipedal and quadrupedal walking in Japanese macaques. Nakatsukasa M; Ogihara N; Hamada Y; Goto Y; Yamada M; Hirakawa T; Hirasaki E Am J Phys Anthropol; 2004 Jul; 124(3):248-56. PubMed ID: 15197820 [TBL] [Abstract][Full Text] [Related]
8. Relationships between clinical measures of static foot posture and plantar pressure during static standing and walking. Jonely H; Brismée JM; Sizer PS; James CR Clin Biomech (Bristol); 2011 Oct; 26(8):873-9. PubMed ID: 21632159 [TBL] [Abstract][Full Text] [Related]
9. Acquisition of operant-trained bipedal locomotion in juvenile Japanese monkeys (Macaca fuscata): a longitudinal study. Tachibana A; Mori F; Boliek CA; Nakajima K; Takasu C; Mori S Motor Control; 2003 Oct; 7(4):388-410. PubMed ID: 14999136 [TBL] [Abstract][Full Text] [Related]
10. Segment and joint angles of hind limb during bipedal and quadrupedal walking of the bonobo (Pan paniscus). D'Août K; Aerts P; De Clercq D; De Meester K; Van Elsacker L Am J Phys Anthropol; 2002 Sep; 119(1):37-51. PubMed ID: 12209572 [TBL] [Abstract][Full Text] [Related]
11. Ground contact characteristics of Tai Chi gait. Wu G; Hitt J Gait Posture; 2005 Aug; 22(1):32-9. PubMed ID: 15996589 [TBL] [Abstract][Full Text] [Related]
12. Spatio-temporal gait characteristics of the hind-limb cycles during voluntary bipedal and quadrupedal walking in bonobos (Pan paniscus). Aerts P; Van Damme R; Van Elsacker L; Duchêne V Am J Phys Anthropol; 2000 Apr; 111(4):503-17. PubMed ID: 10727969 [TBL] [Abstract][Full Text] [Related]
13. Kinematics and ontogeny of locomotion in monkeys and human babies. Niemitz C Z Morphol Anthropol; 2002 Mar; 83(2-3):383-400. PubMed ID: 12050907 [TBL] [Abstract][Full Text] [Related]
14. The functional importance of human foot muscles for bipedal locomotion. Farris DJ; Kelly LA; Cresswell AG; Lichtwark GA Proc Natl Acad Sci U S A; 2019 Jan; 116(5):1645-1650. PubMed ID: 30655349 [TBL] [Abstract][Full Text] [Related]
15. Patterns of mechanical energy change in tetrapod gait: pendula, springs and work. Biewener AA J Exp Zool A Comp Exp Biol; 2006 Nov; 305(11):899-911. PubMed ID: 17029267 [TBL] [Abstract][Full Text] [Related]
16. Forward dynamic simulation of bipedal walking in the Japanese macaque: investigation of causal relationships among limb kinematics, speed, and energetics of bipedal locomotion in a nonhuman primate. Ogihara N; Aoi S; Sugimoto Y; Tsuchiya K; Nakatsukasa M Am J Phys Anthropol; 2011 Aug; 145(4):568-80. PubMed ID: 21590751 [TBL] [Abstract][Full Text] [Related]
17. [Analysis of pressure distribution for the evaluation of gait in patients with hallux valgus surgery]. Milani TL; Retzlaff S Z Orthop Ihre Grenzgeb; 1995; 133(4):341-6. PubMed ID: 7571804 [TBL] [Abstract][Full Text] [Related]
18. Bipedal locomotion by the normally quadrupedal Japanese monkey, M. Fuscata: strategies for obstacle clearance and recovery from stumbling. Mori F; Tachibana A; Takasu C; Nakajima K; Mori S Acta Physiol Pharmacol Bulg; 2001; 26(3):147-50. PubMed ID: 11695527 [TBL] [Abstract][Full Text] [Related]
19. [Influence of the posterior tibial tendon on the medial arch of the foot: an in vitro kinetic and kinematic study]. Emmerich J; Wülker N; Hurschler C Biomed Tech (Berl); 2003 Apr; 48(4):97-105. PubMed ID: 12749288 [TBL] [Abstract][Full Text] [Related]
20. Three-dimensional musculoskeletal kinematics during bipedal locomotion in the Japanese macaque, reconstructed based on an anatomical model-matching method. Ogihara N; Makishima H; Nakatsukasa M J Hum Evol; 2010 Mar; 58(3):252-61. PubMed ID: 20060569 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]