BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 20027644)

  • 21. Scaffold-based bone engineering by using genetically modified cells.
    Hutmacher DW; Garcia AJ
    Gene; 2005 Feb; 347(1):1-10. PubMed ID: 15777645
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Self-assembling peptide nanofiber scaffolds, platelet-rich plasma, and mesenchymal stem cells for injectable bone regeneration with tissue engineering.
    Yoshimi R; Yamada Y; Ito K; Nakamura S; Abe A; Nagasaka T; Okabe K; Kohgo T; Baba S; Ueda M
    J Craniofac Surg; 2009 Sep; 20(5):1523-30. PubMed ID: 19816290
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The potential of human fetal mesenchymal stem cells for off-the-shelf bone tissue engineering application.
    Zhang ZY; Teoh SH; Hui JH; Fisk NM; Choolani M; Chan JK
    Biomaterials; 2012 Mar; 33(9):2656-72. PubMed ID: 22217806
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Human umbilical cord mesenchymal stem cells: osteogenesis in vivo as seed cells for bone tissue engineering.
    Diao Y; Ma Q; Cui F; Zhong Y
    J Biomed Mater Res A; 2009 Oct; 91(1):123-31. PubMed ID: 18767055
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The bone formation in vitro and mandibular defect repair using PLGA porous scaffolds.
    Ren T; Ren J; Jia X; Pan K
    J Biomed Mater Res A; 2005 Sep; 74(4):562-9. PubMed ID: 16025492
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Tissue engineering approach to the treatment of bone tumors: three cases of cultured bone grafts derived from patients' mesenchymal stem cells.
    Morishita T; Honoki K; Ohgushi H; Kotobuki N; Matsushima A; Takakura Y
    Artif Organs; 2006 Feb; 30(2):115-8. PubMed ID: 16433845
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mesenchymal stem cells: isolation, in vitro expansion and characterization.
    Beyer Nardi N; da Silva Meirelles L
    Handb Exp Pharmacol; 2006; (174):249-82. PubMed ID: 16370331
    [TBL] [Abstract][Full Text] [Related]  

  • 28. BMP2 gene therapy on the repair of bone defects of aged rats.
    Yue B; Lu B; Dai KR; Zhang XL; Yu CF; Lou JR; Tang TT
    Calcif Tissue Int; 2005 Dec; 77(6):395-403. PubMed ID: 16362458
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Matrix-mediated retention of in vitro osteogenic differentiation potential and in vivo bone-forming capacity by human adult bone marrow-derived mesenchymal stem cells during ex vivo expansion.
    Mauney JR; Kirker-Head C; Abrahamson L; Gronowicz G; Volloch V; Kaplan DL
    J Biomed Mater Res A; 2006 Dec; 79(3):464-75. PubMed ID: 16752403
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Protein- and gene-based tissue engineering in bone repair.
    Kofron MD; Li X; Laurencin CT
    Curr Opin Biotechnol; 2004 Oct; 15(5):399-405. PubMed ID: 15464368
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Bone marrow mesenchymal stem cells form ectopic woven bone in vivo through endochondral bone formation.
    Chang SC; Tai CL; Chung HY; Lin TM; Jeng LB
    Artif Organs; 2009 Apr; 33(4):301-8. PubMed ID: 19335406
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mesenchymal stem cells for tissue engineering and regenerative medicine.
    Tae SK; Lee SH; Park JS; Im GI
    Biomed Mater; 2006 Jun; 1(2):63-71. PubMed ID: 18460758
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Bone marrow-derived mesenchymal stem cells: isolation, expansion, characterization, viral transduction, and production of conditioned medium.
    Gnecchi M; Melo LG
    Methods Mol Biol; 2009; 482():281-94. PubMed ID: 19089363
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Correlation of in vivo bone formation capability and in vitro differentiation of human bone marrow stromal cells.
    Chen J; Sotome S; Wang J; Orii H; Uemura T; Shinomiya K
    J Med Dent Sci; 2005 Mar; 52(1):27-34. PubMed ID: 15868738
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Pre-culture period of mesenchymal stem cells in osteogenic media influences their in vivo bone forming potential.
    Castano-Izquierdo H; Alvarez-Barreto J; van den Dolder J; Jansen JA; Mikos AG; Sikavitsas VI
    J Biomed Mater Res A; 2007 Jul; 82(1):129-38. PubMed ID: 17269144
    [TBL] [Abstract][Full Text] [Related]  

  • 36. In vitro response of the bone marrow-derived mesenchymal stem cells seeded in a type-I collagen-glycosaminoglycan scaffold for skin wound repair under the mechanical loading condition.
    Kobayashi M; Spector M
    Mol Cell Biomech; 2009 Dec; 6(4):217-27. PubMed ID: 19899445
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Enhanced osteoinduction by mesenchymal stem cells transfected with a fiber-mutant adenoviral BMP2 gene.
    Tsuda H; Wada T; Yamashita T; Hamada H
    J Gene Med; 2005 Oct; 7(10):1322-34. PubMed ID: 15926193
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Allogenic peripheral blood derived mesenchymal stem cells (MSCs) enhance bone regeneration in rabbit ulna critical-sized bone defect model.
    Wan C; He Q; Li G
    J Orthop Res; 2006 Apr; 24(4):610-8. PubMed ID: 16514623
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Repair of articular cartilage defects with "two-phase" tissue engineered cartilage constructed by autologous marrow mesenchymal stem cells and "two-phase" allogeneic bone matrix gelatin].
    Yin Z; Zhang L; Wang J
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2005 Aug; 19(8):652-7. PubMed ID: 16130396
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Biochemical and molecular characterization of hepatocyte-like cells derived from human bone marrow mesenchymal stem cells on a novel three-dimensional biocompatible nanofibrous scaffold.
    Kazemnejad S; Allameh A; Soleimani M; Gharehbaghian A; Mohammadi Y; Amirizadeh N; Jazayery M
    J Gastroenterol Hepatol; 2009 Feb; 24(2):278-87. PubMed ID: 18752558
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.