BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

388 related articles for article (PubMed ID: 20028024)

  • 1. Activity-based proteome profiling of potential cellular targets of Orlistat--an FDA-approved drug with anti-tumor activities.
    Yang PY; Liu K; Ngai MH; Lear MJ; Wenk MR; Yao SQ
    J Am Chem Soc; 2010 Jan; 132(2):656-66. PubMed ID: 20028024
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chemical modification and organelle-specific localization of orlistat-like natural-product-based probes.
    Yang PY; Liu K; Zhang C; Chen GY; Shen Y; Ngai MH; Lear MJ; Yao SQ
    Chem Asian J; 2011 Oct; 6(10):2762-75. PubMed ID: 21744505
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Parasite-based screening and proteome profiling reveal orlistat, an FDA-approved drug, as a potential anti Trypanosoma brucei agent.
    Yang PY; Wang M; Liu K; Ngai MH; Sheriff O; Lear MJ; Sze SK; He CY; Yao SQ
    Chemistry; 2012 Jul; 18(27):8403-13. PubMed ID: 22674877
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Click-based synthesis and proteomic profiling of lipstatin analogues.
    Ngai MH; Yang PY; Liu K; Shen Y; Wenk MR; Yao SQ; Lear MJ
    Chem Commun (Camb); 2010 Nov; 46(44):8335-7. PubMed ID: 20577697
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Orlistat, a novel potent antitumor agent for ovarian cancer: proteomic analysis of ovarian cancer cells treated with Orlistat.
    Huang HQ; Tang J; Zhou ST; Yi T; Peng HL; Shen GB; Xie N; Huang K; Yang T; Wu JH; Huang CH; Wei YQ; Zhao X
    Int J Oncol; 2012 Aug; 41(2):523-32. PubMed ID: 22581080
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis and structure-activity relationships of new benzodioxinic lactones as potential anticancer drugs.
    Romero M; Renard P; Caignard DH; Atassi G; Solans X; Constans P; Bailly C; Pujol MD
    J Med Chem; 2007 Jan; 50(2):294-307. PubMed ID: 17228871
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis and antitumour activity of new muricatacin and goniofufurone analogues.
    Popsavin V; Srećo B; Krstić I; Popsavin M; Kojić V; Bogdanović G
    Eur J Med Chem; 2006 Oct; 41(10):1217-22. PubMed ID: 16891043
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gamma-lactones alpha,beta- and beta,gamma-fused to carbocycles as novel antiproliferative drugs.
    León LG; Machín RP; Rodríguez CM; Ravelo JL; Martín VS; Padrón JM
    Bioorg Med Chem Lett; 2008 Oct; 18(19):5171-3. PubMed ID: 18789684
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystal structure of the thioesterase domain of human fatty acid synthase inhibited by Orlistat.
    Pemble CW; Johnson LC; Kridel SJ; Lowther WT
    Nat Struct Mol Biol; 2007 Aug; 14(8):704-9. PubMed ID: 17618296
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular simplification in bioactive molecules: formal synthesis of (+)-muconin.
    Pinacho Crisóstomo FR; Carrillo R; León LG; Martín T; Padrón JM; Martín VS
    J Org Chem; 2006 Mar; 71(6):2339-45. PubMed ID: 16526782
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design, synthesis, and anti-tumor activity of (2-O-alkyloxime-3-phenyl)-propionyl-1-O-acetylbritannilactone esters.
    Liu S; Liu H; Yan W; Zhang L; Bai N; Ho CT
    Bioorg Med Chem; 2005 Apr; 13(8):2783-9. PubMed ID: 15781389
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Importance of molecular computer modeling in anticancer drug development.
    Geromichalos GD
    J BUON; 2007 Sep; 12 Suppl 1():S101-18. PubMed ID: 17935268
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Strategy for the development of novel anticancer drugs.
    Saijo N; Tamura T; Nishio K
    Cancer Chemother Pharmacol; 2003 Jul; 52 Suppl 1():S97-101. PubMed ID: 12856152
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Development of antituberculous drugs: current status and future prospects].
    Tomioka H; Namba K
    Kekkaku; 2006 Dec; 81(12):753-74. PubMed ID: 17240921
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The opportunities and challenges of personalized genome-based molecular therapies for cancer: targets, technologies, and molecular chaperones.
    Workman P
    Cancer Chemother Pharmacol; 2003 Jul; 52 Suppl 1():S45-56. PubMed ID: 12819933
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SAR studies of 2-methoxyestradiol and development of its analogs as probes of anti-tumor mechanisms.
    Ho A; Kim YE; Lee H; Cyrus K; Baek SH; Kim KB
    Bioorg Med Chem Lett; 2006 Jul; 16(13):3383-7. PubMed ID: 16650989
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Epothilones as lead structures for the synthesis-based discovery of new chemotypes for microtubule stabilization.
    Feyen F; Cachoux F; Gertsch J; Wartmann M; Altmann KH
    Acc Chem Res; 2008 Jan; 41(1):21-31. PubMed ID: 18159935
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Darpones and water-soluble aminobutoxylated darpone derivatives are distinguished by matrix COMPARE analysis.
    Prühs C; Kunick C
    Bioorg Med Chem Lett; 2007 Apr; 17(7):1850-4. PubMed ID: 17296296
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel caprolactones from a marine streptomycete.
    Stritzke K; Schulz S; Laatsch H; Helmke E; Beil W
    J Nat Prod; 2004 Mar; 67(3):395-401. PubMed ID: 15043417
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design, synthesis, and biological evaluation of simplified analogues of (+)-discodermolide. Additional insights on the importance of the diene, the C7 hydroxyl, and the lactone.
    Smith AB; Xian M
    Org Lett; 2005 Nov; 7(23):5229-32. PubMed ID: 16268545
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.