These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 20028051)

  • 41. Total oxidation of naphthalene with high selectivity using a ceria catalyst prepared by a combustion method employing ethylene glycol.
    Aranda A; López JM; Murillo R; Mastral AM; Dejoz A; Vázquez I; Solsona B; Taylor SH; García T
    J Hazard Mater; 2009 Nov; 171(1-3):393-9. PubMed ID: 19576687
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Formation of adducts in the reaction of glyoxal with 2'-deoxyguanosine and with calf thymus DNA.
    Pluskota-Karwatka D; Pawłowicz AJ; Tomas M; Kronberg L
    Bioorg Chem; 2008 Apr; 36(2):57-64. PubMed ID: 18078668
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Investigation of the radical product channel of the CH3COO2 + HO2 reaction in the gas phase.
    Jenkin ME; Hurley MD; Wallington TJ
    Phys Chem Chem Phys; 2007 Jun; 9(24):3149-62. PubMed ID: 17612738
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Photo-induced OH reactions of naphthalene and its oxidation products on SiO2.
    Brussol C; Duane M; Carlier P; Kotzias D
    Environ Sci Pollut Res Int; 1999; 6(3):138-40. PubMed ID: 19009387
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Products of the gas-phase reactions of OH radicals with (C2H5O)2P(S)CH3 and (C2H5O)3PS.
    Tuazon EC; Aschmann SM; Atkinson R
    J Phys Chem A; 2007 Feb; 111(5):916-24. PubMed ID: 17266233
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Kinetics of ozone reactions with 1-naphthalene, 1,5-naphthalene and 3-nitrobenzene sulphonic acids in aqueous solutions.
    Calderara V; Jekel M; Zaror C
    Water Sci Technol; 2001; 44(5):7-13. PubMed ID: 11695486
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Kinetic and product study of the gas-phase reactions of OH radicals, NO(3) radicals, and O(3) with (C(2)H(5)O)(2)P(S)CH(3) and (C(2)H(5)O)(3)PS.
    Aschmann SM; Atkinson R
    J Phys Chem A; 2006 Dec; 110(48):13029-35. PubMed ID: 17134163
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Rate coefficients for the OH + HC(O)C(O)H (glyoxal) reaction between 210 and 390 K.
    Feierabend KJ; Zhu L; Talukdar RK; Burkholder JB
    J Phys Chem A; 2008 Jan; 112(1):73-82. PubMed ID: 18052049
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Reactions of nucleosides with glyoxal and acrolein.
    Shapiro R; Sodum RS; Everett DW; Kundu SK
    IARC Sci Publ; 1986; (70):165-73. PubMed ID: 3793171
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Rapid formation of secondary organic aerosol from the photolysis of 1-nitronaphthalene: role of naphthoxy radical self-reaction.
    Healy RM; Chen Y; Kourtchev I; Kalberer M; O'Shea D; Wenger JC
    Environ Sci Technol; 2012 Nov; 46(21):11813-20. PubMed ID: 23013142
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Dimethylzinc-initiated radical reactions.
    Akindele T; Yamada K; Tomioka K
    Acc Chem Res; 2009 Feb; 42(2):345-55. PubMed ID: 19113862
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Mechanisms of dioxin formation from the high-temperature oxidation of 2-chlorophenol.
    Evans CS; Dellinger B
    Environ Sci Technol; 2005 Jan; 39(1):122-7. PubMed ID: 15667085
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Can the C(5)H(5) + C(5)H(5) --> C(10)H(10) --> C(10)H(9) + H/C(10)H(8) + H(2) reaction produce naphthalene? An Ab initio/RRKM study.
    Mebel AM; Kislov VV
    J Phys Chem A; 2009 Sep; 113(36):9825-33. PubMed ID: 19681629
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Effects of precursor concentration and acidic sulfate in aqueous glyoxal-OH radical oxidation and implications for secondary organic aerosol.
    Tan Y; Perri MJ; Seitzinger SP; Turpin BJ
    Environ Sci Technol; 2009 Nov; 43(21):8105-12. PubMed ID: 19924930
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Study of the atmospheric chemistry of 2-formylcinnamaldehyde.
    Aschmann SM; Arey J; Atkinson R
    J Phys Chem A; 2013 Aug; 117(33):7876-86. PubMed ID: 23923823
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Assessment of the photochemistry of OH and NO3 on Jeju Island during the Asian-dust-storm period in the spring of 2001.
    Shon ZH; Kim KH; Bower KN; Lee G; Kim J
    Chemosphere; 2004 May; 55(8):1127-42. PubMed ID: 15050810
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A mechanistic study of the effects of antioxidants on the formation of malondialdehyde-like products in the reaction of hydroxyl radicals with deoxyribose.
    Rachmilovich-Calis S; Meyerstein N; Meyerstein D
    Chemistry; 2009 Aug; 15(31):7717-23. PubMed ID: 19551771
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Molecular mechanisms of silybin and 2,3-dehydrosilybin antiradical activity--role of individual hydroxyl groups.
    Gazák R; Sedmera P; Vrbacký M; Vostálová J; Drahota Z; Marhol P; Walterová D; Kren V
    Free Radic Biol Med; 2009 Mar; 46(6):745-58. PubMed ID: 19138735
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Kinetics of the gas-phase reactions of chlorine atoms with naphthalene, acenaphthene, and acenaphthylene.
    Riva M; Healy RM; Flaud PM; Perraudin E; Wenger JC; Villenave E
    J Phys Chem A; 2014 May; 118(20):3535-40. PubMed ID: 24746347
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Atmospheric fate of OH initiated oxidation of terpenes. Reaction mechanism of alpha-pinene degradation and secondary organic aerosol formation.
    Librando V; Tringali G
    J Environ Manage; 2005 May; 75(3):275-82. PubMed ID: 15829369
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.